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Executive summary  

 
 
This deliverable of the Horizon 2020 project Levitate presents methods for forecasting 
the impacts of connected and automated vehicles. The main objectives of the deliverable 
are: 
 

1. To survey methods that can be applied to forecast the impacts of connected and 
automated vehicles and indicate which methods are best suited for specific 
impacts. 

2. To apply the methods to develop forecasts of impacts and assess the uncertainty 
of the forecasts. 

3. To quantify as many potential impacts as possible for inclusion in the policy 
support tool being developed in Levitate. 

4. To identify impacts for which forecasts are currently difficult to make. 
 
As a starting point, a list has been developed of potential impacts of connected and 
automated vehicles that have been identified in the literature. This list is used as a frame 
of reference for discussing methods that can be applied to forecast impacts. The ultimate 
objective is to develop a policy support tool to enable policy makers, for example a city 
government, to estimate the impacts of different policies influencing the introduction and 
use of connected and automated vehicles. To serve this end, it is desirable to quantify as 
many of the potential impacts as possible. Quantification is necessary in order to convert 
impacts to monetary terms and enable analyses of their costs and benefits. The 
conversion of impacts to monetary terms is decribed in deliverable D3.3 of Levitate. 
Cost-benefit analyses of connected and automated vehicles are described in deliverable 
D3.4 of Levitate. 
 
Based on deliverable D3.1 of Levitate, a distinction is made between direct, systemic and 
wider impacts. Direct impacts are noticed by each road user on each trip. Systemic 
impacts are system-wide impacts occurring in the transport system, such as changes in 
traffic volume, travel time or route choice. Wider impacts are impacts that are noticed or 
occur outside the transport system. Accidents have been classified as a wider impact, 
since some of their impacts occur outside the transport system (hospitals, insurance 
companies, etc.) 
 
A survey of methods that can be applied to study potential impacts of connected and 
automated vehicles found that several methods are relevant. A distinction is made 
between retrospective methods and future-oriented methods. A combination of methods 
in both categories is needed to gain a full overview of potential impacts of connected and 
automated vehicles. Among the future-oriented methods, various forms of traffic 
simulation have been widely applied to study impacts of connected and automated 
vehicles. Traffic simulation can indicate changes in road capacity or travel time directly. 
Changes in road safety are usually modelled in terms of surrogate measures, in 
particular traffic conflicts. 
 
Estimates of potential impacts have been developed by combing the following methods: 
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1. Systematic literature reviews and (simplified) meta-analysis of studies 
2. Surveys of willingness-to-pay for automation technology and of the valuation of 

travel time 
3. System dynamics modelling, in particular with respect to the wider impacts of 

automation technology, illustrated for the case of moving house within parts of a 
city 

4. Development of scenarios describing potential cyber attacks on connected and 
automated vehicles 

 
The results of studies employing these methods are presented in this deliverable. It was 
not always possible to formally synthesise the results of several studies dealing with an 
impact by means of state-of-the-art techniques of meta-analysis. This is why the term 
simplified has been inserted above. The main findings can be summarised as follows: 
 

1. Several studies indicate that connected and automated vehicles will increase road 
capacity, or utilise it more effectively. 

2. An increase in road capacity or more effective utilisation of it will, all else equal, 
reduce travel time. 

3. Connected and automated vehicles will reduce the number of road accidents. 
4. Connected and automated vehicles will reduce emissions and air pollution. 

 
There is consensus in the research literature about these impacts. Quantitative estimates 
of the impacts vary considerably. Quantitative estimates of impacts are therefore 
associated with considerable uncertainty. Traffic simulation studies enable a number of 
potential impacts of connected and automated vehicles to be quantified in terms of dose-
response curves. A dose-response curve has the market penetration rate of automated 
vehicles as the dose, and the size of an impact, e.g. the percentage change in travel 
time, as the response. The dose-response framework is flexible and widely applicable. 
However, dose-response curves are still not available for all impacts of connected and 
automated vehicles. Moreover, some the currently available dose-response curves are 
highly uncertain. There is thus a need for developing more valid dose-response curves 
than those that are available now. Dose-response curves and estimates of the 
uncertainty of the curves have been developed for: 
 

1. Impacts on capacity and mobility 
a. Lane capacity 
b. Junction capacity 
c. Delays on motorways 
d. Delays in roundabouts 
e. Delays in signalised junctions 
f. Travel time on motorways 
g. Delays in junctions (average of roundabouts and signalised) 
h. Travel time in cities (derived from changes in capacity and delays) 

2. Impacts on safety 
a. Rear-end and lane change collisions (motorways) 
b. Accidents in signalised junctions 
c. Accidents in roundabouts 
d. Accidents in priority controlled junctions 
e. Cyclist and pedestrian accidents 
f. Accidents in urban junctions (average of signals, roundabouts, priority) 
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3. Impacts on fuel consumption (and emissions) 
a. Fuel consumption (and emissions, if these are assumed to be proportional 

to fuel consumption) 
4. Other impacts and feedback impacts 

a. Diffusion curves for market penetration of automated vehicles 
b. (Induced) travel demand on motorways 
c. (Induced) travel demand in cities 
d. Behavioural adaptation to platoons by manually driven vehicles 

 
In addition to the dose-response functions, the following impacts were quantified: 
 

1. Willingness-to-pay for automation technology 
2. Demand function for automated vehicles 
3. Valuation of travel time in automated vehicles 

 
A system dynamics model was illustrated for land use and moves between parts of a city, 
inducing longer commutes. 
 
Some potential impacts of connected and automated vehicles are difficult to predict with 
any confidence. This applies to the following impacts: 
 

1. Whether there will be a widespread transition from individual to shared mobility. 
There is no consensus on whether individual use of motor vehicles will continue at 
present levels or be replaced by various forms of shared mobility. 

2. It is not clear what type of propulsion energy connected and automated vehicles 
will use. Some researchers expect the introduction of connected and automated 
vehicles to be associated with a transition to electric propulsion. 

3. Connected and automated vehicles are vulnerable to cyber attacks. However, the 
risk of such attacks cannot be quantified. Potential scenarios can be described. 

4. The costs of connected and automated vehicles are highly uncertain. It is not 
clear that connected and automated vehicles will be as affordable as current 
motor vehicles. The costs of automation technology may influence the level of 
inequality in access to transport. 

5. Behavioural adaptation to connected and automated vehicles, in particular during 
the transition period before full market penetration. While some studies suggest 
various forms of behavioural adaptation, predicting its form and impacts is 
impossible or speculative. 

6. Changes in employment are difficult to predict. While full automation will 
eliminate the need for drivers, other potential changes in employment are less 
known. 

 
Evidence based on research is therefore not available for all potential impacts of 
connected and automated vehicles identified in Levitate. Research can therefore only 
inform policy makers about some potential impacts of connected and automated vehicles. 
 



 

LEVITATE | Deliverable D3.2 | WP3 | Final 4 

1 Introduction and objective 

 

This deliverable gives an overview of methods for forecasting potential impacts 
of connected and automated vehicles. The importance of quantifying impacts is 
stressed. A main objective of Levitate is to develop a policy support tool. To 
develop this tool, it is necessary to establish quantified relationships between 
levels of implementation for connected and automated vehicles and the 
magnitude of impacts of such vehicles. This introductory chapter defines the 
objectives of the deliverable. 

 

1.1 The Levitate project 
LEVITATE (Societal level impacts of connected and automated vehicles) is a Horizon 2020 
project which has the following main objectives: 
 
1. To develop a range of forecasting and backcasting scenarios and baseline 

conditions relating to the deployment of one or more mobility technologies that will 
be used as the basis of impact assessments and forecasts. These will cover three 
primary use cases – automated urban shuttle, passenger cars and freight services. 

2. To establish a multi-disciplinary methodology to assess the short, medium and 
long-term impacts of connected and automated transport systems (CATS) on 
mobility, safety, environment, society and other impact areas. Several quantitative 
indicators will be identified for each impact type. 

3. To apply the methods and forecast the impact of CATS over the short, medium 
and long term for a range of use cases, operational design domains and 
environments and an extensive range of mobility, environmental, safety, 
economic and societal indicators. A series of case studies will be conducted to 
validate the methodologies and to demonstrate the system. 

4. To incorporate the methods within a new web-based policy support tool to enable 
city and other authorities to forecast impacts of CATS on urban areas. The methods 
developed within Levitate will be available within a toolbox allowing the impact of 
measures to be assessed individually. A Decision Support System will enable users to 
apply backcasting methods to identify the sequences of CATS measures that will 
result in their desired policy objectives. 
 

1.2 Work package 3 and objectives of this deliverable 
This deliverable contributes to the second and third objectives. Developing methods for 
assessing and predicting the impacts of CATS consists of the following main stages: 
 

1. Identification and classification of impacts of connected and automated transport 
systems 
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2. Description and measurement of impacts of connected and automated transport 
systems 

3. Development of methods for backcasting and forecasting of impacts of connected 
and automated transport systems 

4. Evaluation of comparability and amenability to monetary valuation of impacts of 
connected and automated transport systems 

5. Developing methods for analysing costs and benefits of connected and automated 
transport systems 

Deliverable D3.1 addressed the first point on this list and provided a taxonomy of 
potential impacts of connected and automated transport systems (CATS) and briefly 
discussed how to measure the impacts. This deliverable continues where deliverable D3.1 
ended, by discussing methods for forecasting the impacts of CATS. The main objectives 
of the deliverable are: 
 

1. To give an overview of methods that have been used or can be used in order to 
forecast impacts of connected and automated vehicles 

2. To discuss criteria for the choice between methods or how different methods can 
best be combined 

3. To develop quantified relationships between levels of implementation of connected 
and automated vehicles and as many potential impacts of such vehicles as 
possible based on available studies 

4. To show how the quantified relationships can be applied to predict impacts of 
connected and automated vehicles. 

 
The third objective is particularly relevant for the development of the Levitate policy 
support tool. This will contain an estimator module, allowing the user to estimate impacts 
of CATS in specific contexts, by specifying the technologies whose impacts are to be 
estimated and the type of traffic environment or type of transport where CATS will be 
introduced. It is necessary to specify impacts as functional relationships in order to 
perform cost-benefit analyses, which will also be an option in the policy support tool. The 
main research questions to be answered in this deliverable are: 
 

1. Which methods can be used to forecast potential impacts of connected and 
automated vehicles? 

2. What results have been obtained by means of different methods? Do different 
methods produce similar results? 

3. How can functional relationships for the impacts of connected and automated 
vehicles be distilled from available studies? 

 
The answers to all these questions are based on a literature review. To give a preview of 
the results, various forms of simulation have been widely used to model the impacts of 
CATS. Simulation will also be used in Levitate and will produce additional estimates of 
impacts not included in this deliverable. The policy support tool will include both the 
impacts based on the literature reviewed in this deliverable and further estimates of 
impacts based on simulation studies performed in other work packages of Levitate. 
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2 Overview of potential impacts 

 

Potential impacts of connected and automated transport systems (CATS) were 
identified in Deliverable 3.1 of Levitate. For the sake of completeness, these 
impacts are also listed here. 

Table 1 lists the potential impacts of CATS as identified in deliverable D3.1. A distinction 
is made between direct, systemic and wider impacts. 
 

Table 1: Potential impacts of connected and automated transport systems 
 

Impact Description of impact 

Direct impacts (micro level) 

Travel time Duration of a trip between a given origin and a given destination 

Travel comfort Subjective rating of the level of comfort on a given trip 

Valuation of time Willingness-to-pay for reduced travel time 

Vehicle operating cost  Direct outlays for operating a vehicle per kilometre of travel 

Vehicle ownership cost The cost of buying and keeping a vehicle 

Access to travel The opportunity of taking a trip whenever and wherever wanted 

Route choice (individual) Technology to support the best choice of route on a given trip 

Systemic impacts (macro level) 

Amount of travel Vehicle kilometres or person kilometres of travel per year in an area 

Road capacity The maximum number of vehicles that can pass a section of road per unit 
of time 

Congestion Delays to traffic as a result of high traffic volume 

Infrastructure wear The rate per unit of time at which a road is worn down 

Infrastructure design Equipping roads with technology for vehicle-to-infrastructure 
communication 

Modal split of travel The distribution of trips between modes of transport 

Optimisation of route choice Direction of vehicles to routes that minimise overall generalised cost of 
travel for traffic as a total 

Vehicle ownership rate Percent of households owning 0, 1, 2 etc vehicles 

Shared mobility Sharing a vehicle with others on a trip-by-trip basis 

Vehicle utilisation rate Share of time a vehicle is in motion (not parked); cabin factor (share of 
seats in use) 

Parking space Size of areas designated for parking 

Traffic data generation The availability of detailed trip data for transport planning 
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Table 1: Potential impacts of connected and automated transport systems 
 

Impact Description of impact 

Wider impacts 

Trust in technology Share of population indicating high trust in automation technology 

Road safety The number and severity of accidents 

Propulsion energy Source of energy used to move vehicles (fossil fuel or electric) 

Energy efficiency Rate at which propulsion energy is converted to movement; rate of loss 
due to conversion of energy to heat or noise rather than movement 

Vehicle emissions Emissions in micrograms per kilometre per vehicle (by chemical) 

Air pollution Concentration of pollutants per cubic metre of air 

Noise pollution Number of individuals exposed to noise above a certain threshold 

Public health Incidence of morbidity and mortality; subjectively rated health state 

Employment Changes in number of people employed in given occupations 

Geographic accessibility Time used to reach a given destination from different origins 

Inequality in transport Statistics indicating skewness in the distribution of travel behaviour 
between groups according to social status 

Commuting distances Length of trips to and from work 

Land use Density of land use for given purposes (residential, industrial, etc.) 

Public finances Income and expenses of the public sector 

 
A total of 33 impacts are listed. The direct impacts occur at the micro level. The systemic 
impacts occur at the macro level and are an aggregation of the direct impacts. The direct 
impacts are impacts that are noticed by each road user on each trip. The systemic 
impacts are system-wide changes in traffic operations and safety. 
 
Thus, changes in travel time are closely related to changes in road capacity and 
congestion. Change in travel comfort is related to trust in technology. Valuation of travel 
time is related to optimisation of route choice. Vehicle operation cost is related to vehicle 
utilisation rate. Vehicle ownership cost is related to vehicle ownership rate. Access to 
travel is correlated with amount of travel and inequality in transport. Individual route 
choice is related to optimisation of route choice. 
 
Most of the studies that try to estimate and quantify impacts of CATS do so at the 
aggregate level and deal with systemic impacts. However, estimating systemic impacts 
will capture the typical impacts at the individual level, e.g. typical changes in travel time. 
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3 Methods for forecasting impacts 

 

This chapter gives an overview of methods for forecasting impacts of connected 
and automated transport systems (CATS). The main objective is to identify 
which methods or combinations of methods are best suited for forecasting 
specific potential impacts. The possibility of combining results from studies 
employing the same method is discussed. Differences and similarities between 
methods are discussed. A distinction is made between historical or 
retrospective methods and future-oriented methods. Combining methods in 
order to develop quantified estimates of the impacts of CATS is discussed. 

 
A common method for establishing knowledge about the impacts of transport innovations 
is to study what happened before and after their introduction. Did the new road reduce 
congestion and travel time? Are cars of model year n+1 safer than cars of model year n? 
Did the change in underground fares lead to a change in ridership? In all these, and very 
many other cases, the change made can be clearly specified; it occurred at a certain date 
or within a comparatively short period of time, and data relevant for evaluating impacts 
were available or could be collected both before and after the change. 
 
The introduction of connected and automated vehicles does not fit this pattern. It is likely 
to be a prolonged and gradual process, evolving during a period of perhaps 10-30 years. 
There is no well-defined before- or after-period, except perhaps the period before any 
vehicles were connected or automated and the period after all vehicles are connected or 
automated. When the task is to assess the potential impacts of connected and automated 
vehicles, one clearly must do so before these vehicles have been widely introduced. The 
word “potential” is therefore essential. Any current assessment can only deal with 
potential impacts. Actual impacts can be studied much later. 
 
This does not necessarily mean that traditional before-and-after studies or similar 
“historical” study designs are irrelevant when the task is to predict future impacts of 
systems not yet introduced. To give one example: Several studies predict that connected 
and automated vehicles can increase road capacity, or rather, utilise it more effectively, 
e.g. by driving with shorter headways, eliminating speed variance, change lanes with 
shorter gaps and select a speed that maximises throughput. If the increase in road 
capacity can be quantified, there are many “historical” studies of how increases in road 
capacity have affected travel demand. Surely, these studies are relevant when trying to 
predict a rebound effect elicited by the increase in road capacity associated with 
connected and automated vehicles. 
 
Thus, one cannot rely on one type of study exclusively. The complexity and 
multidimensional character of the task of forecasting the impacts of connected and 
automated vehicles requires the use of a broad array of methods. It is therefore useful to 
list relevant methods and categorise them. This is done in the next section. 
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3.1 A classification of methods 
A distinction is made between two main types of methods: 
 
1. Historical or retrospective methods 
2. Future-oriented methods 
 
Within each group, a further classification of methods can be developed. The following 
list comprises the most commonly applied methods: 
 

1. Historical or retrospective methods 
a. Longitudinal studies; time-series models 
b. Before-and-after studies (several versions exist) 
c. Epidemiological studies; comparative or retrospective risk analyses 
d. In-depth studies of accidents 
e. Meta-analysis 
f. Household travel surveys (to reconstruct actual travel) 
g. Travel demand modelling 
h. Naturalistic driving studies 

2. Future-oriented methods 
a. Scenario analyses 
b. Delphi surveys 
c. Biomechanical modelling (of impacts involving future vehicles) 
d. Field operational trials 
e. Driving simulation; driving simulator studies 
f. Traffic simulation; mathematical modelling of traffic 
g. Mesoscopic simulation; activity-based-modelling 
h. Operations research 
i. System dynamics modelling 
j. Reliability engineering; prospective risk analyses 
k. Surveys (can be used for many topics) 
l. Willingness-to-pay studies (often surveys, but listed separately here) 

 
Examples of knowledge that can be gained from the various methods are given below. 
 
3.1.1 Historical or retrospective methods 
 
Longitudinal studies and time series models may, for example, shed light on the 
time it takes for new technology to fully penetrate the market and factors influencing the 
length of this time. Motor cars were invented more than 100 years ago and have still not 
reached saturation levels in all countries of the world. However, in the highly motorised 
countries, the car fleet is now growing slowly, suggesting that in these societies, cars are 
close to full market penetration. Models of how long it takes for the car fleet to 
completely renew can be used to predict the duration of the transition phase from only 
manual vehicles to fully automated vehicles, assuming that historical turnover rates 
remain constant. For an example, relating to transition to electric vehicles, see Fridstrøm 
and Østli (2016) 
 
There are no before-and-after studies of connected and automated vehicles. However, 
numerous before-and-after studies have been conducted to evaluate impacts that are 
relevant for connected and automated vehicles. There are, for example, studies 
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evaluating impacts of level 1 and level 2 driver assistance and automation systems (see 
e.g. Høye 2011 on electronic stability control and Leslie et al. 2019 for active safety 
systems and advanced headlight systems). For some impacts, like new travel demand 
induced by increased road capacity, it appears reasonable to assume that historically 
observed relationships will apply to connected and automated vehicles (Hymel 2019). 
 
Estimates of safety impacts of connected and automated vehicles can be obtained by 
epidemiological studies comparing the risks of automated vehicles to manual vehicles 
and naturalistic driving studies quantifiying the contributions made to accidents of 
driver distractions or hazardous actions that will be eliminated by connected and 
automated vehicles. Examples of these approaches and what one can get out of them are 
given later in the report. 
 
Some estimates of the potential safety impacts of connected and automated vehicles 
(Fagnant and Kockelman 2015, Herrmann, Brenner and Stadler 2018) have relied on 
findings of in-depth studies of accidents. These studies typically conclude that more 
than 90% of accidents can be attributed to errors made by road users. The quoted 
studies assumed that these errors will be eliminated by connected and automated 
vehicles. 
 
Meta-analysis is used to synthesise the findings of several studies dealing with the 
same topic. There are many techniques of meta-analysis, some of which may be relevant 
for summarising studies of potential impacts of connected and automated vehicles. There 
have, for example, been several studies of how truck platooning influences fuel 
consumption (Slowik and Sharpe 2018). It is of interest to summarise the results of 
these studies in terms of a mean estimate of effect and the uncertainty surrounding this 
estimate. 
 
Household travel surveys are carried out regularly in many countries. These studies 
show current travel as well as, for example, current car ownership, and knowing this is 
essential when estimating potential changes in travel behaviour that may be produced by 
connected and automated vehicles. Travel surveys also often collect data on driving 
licences. One of the potential impacts of fully automated vehicles is to improve mobility 
for people without a driving licence. 
 
Household travel surveys are often used as input in travel demand modelling. Models 
of travel demand are widely used when planning new transport infrastructure or 
predicting effects of, for example changes in traffic control or the introduction of road 
pricing. As connected and automated vehicles are widely believed to influence the 
generalised costs of travel, they are likely to also influence travel demand. Known 
elasticities of travel demand with respect to the generalised costs of travel can be applied 
to predict how changes in the generalised costs of travel brought about by connected and 
automated vehicles may influence travel demand. 
 
Naturalistic driving studies (Dingus et al. 2016) apply inconspicuous cameras to 
record driving behaviour, including indicators of driver alertness and where the driver is 
looking. The cameras are very small and their pres ence in the vehicles is believed not to 
influence driver behaviour. An advantage of naturalistic driving studies is that all 
accidents are recorded. Complete recording of accidents eliminates an important source 
of error when comparing the safety of human driven vehicles and autonomous vehicles. 
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All accidents involving autonomous vehicles are recorded, whereas, except in naturalistic 
driving studies, this is not case for accidents involving cars driven by human drivers. 
 
3.1.2 Future-oriented methods 
 
The development and analysis of scenarios is a common method for studying possible 
future development, especially if no definite predictions can be made regarding these 
developments. Scenario analysis is eminently suited to the study of connected and 
automated vehicles, as there are too many deep uncertainties about the introduction of 
these vehicles to predict with any confidence when they will be introduced, how much 
safer they will be than vehicles driven by humans, whether they will affect car ownership 
rates, and so on and so forth. A scenario gives the analyst the opportunity to fix values 
for all these uncertain factors and then see what happens. If a set of scenarios are 
developed, and these are very different, they may encompass all possible outcomes of 
the introduction of connected and automated vehicles. Scenarios have been developed 
for cyber attacks on connected and automated vehicles. 
 
A Delphi survey is a multi-stage survey of experts, often asking them about when a 
certain technology will be introduced and what its effects are likely to be. Answers in the 
first stage are usually reported back to respondents, giving them an impression of what 
others have answered and offering the opportunity to revise their answers in the first 
round. The idea is that after a few rounds, a consensus opinion will emerge. An example 
of the use of a Delphi survey is given by Høye, Hesjevoll and Vaa (2015). 
 
Biomechanical modelling, applying open source human body models, is increasingly 
used to predict the effects of design elements or design changes in automobiles. Human 
body models are mathematical models and simulations of the behaviour of human bodies 
in accidents. While computationally intensive, such models are increasingly viewed as a 
better tool for analysing injury mechanisms than using crash test dummies. Mathematical 
models are more flexible and one may develop models of both adults and children, 
spanning a wide range of body sizes. The ongoing Horizon 2020 project VIRTUAL is 
developing a set of open source human body models that will be applied, among other 
things, to studying new seating postures in driverless cars. 
 
A field operational trial (often abbreviated FOT) is a study made in a natural setting, 
either real traffic or a closed test track, to test the performance of drivers or of new 
technology. It has, for example, been used to evaluate the reaction times of drivers to 
take-over requests in SAE level 3 automated vehicles. Field operational tests are often 
used to test prototypes of new technology, to evaluate if it functions as intended. 
 
Driving simulator studies have been widely applied to evaluate driver use of and 
adaptation to automation technology. Most advanced driving simulators can simulate 
fully automated driving. One may then compare automated driving to manual driving. 
Driving simulators are particularly useful for evaluating behavioural adaptation to 
automation technology. 
 
Traffic simulation has been widely applied to estimate potential impacts of connected 
and automated vehicles. Since this method is quite commonly used to study potential 
impacts of new technology, it will be described in more detail than the other methods 
surveyed in this section. Traffic simulation is the mathematical modelling of transport 
systems through the application of computer software to better help plan, design and 
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operate transport systems. It is a flexible tool that has proven to be valuable due to its 
applicability to ex-ante evaluations of new transport technologies (such as CATS). As it 
has been widely applied in Levitate, a more detailed description of it is given in section 
3.1.3. 
 
Mesoscopic simulation is a supplemental method within the group of simulation 
approaches, which emphasises the modelling of behaviours and choices of individuals. 
Such an activity-based-modeling (ABM) framework is realised by the mesoscopic traffic 
simulation tools of MATSim. “Mesoscopic” in this context underlines the fact that the 
method is less focussed on immediate interactions between road users, thus reducing the 
level and complexity of these details, but rather on the choices the simulated agents 
make to re-arrange their daily routes and schedules of activities. Each of the activities 
within a complete daily chain or “plan” are preferably reached in time by the means of 
transport available to each agent within the simulated area under investigation. The 
major conclusions that can be extracted from such models refer to changes in modal 
split, as well as differences in road network loads and vehicle utilisation. MATSim has 
been applied to a wide range of scenarios and locations and provides a rich set of results 
for comparison and transferability. For a recent application, see Ahanchian et al. (2019). 
 
Operations research offers a complementary methodology toolset to simulation. It 
contains analytical methods for solving optimisation problems in the field of management 
of organisations – in this project particularly transport management. Among the 
methodologies, there are two classes. The first class consists of exact approaches which 
aim to solve problems to proven optimality – provided that they are given enough run-
time and memory. Well known representatives are mixed integer programming or 
branch-and-bound. The second class are (meta-)heuristics which compute approximate 
solutions but usually require significantly less runtime. For this project and in practice the 
latter is more convenient since real-world problems are too complex for exact 
approaches. Of course there are also so-called hybrid methods that combines these two 
classes, trying to benefit from advantages of both sides. 
 
System dynamics is a forecasting technique originating in meteorology. It has been 
adopted by the social sciences and became widely known when the book “The limits to 
growth” (Meadows et al. 1972) was published in 1972. It models processes of change by 
means of a set of differential equations. For a recent application to CATS, see 
Nieuwenhuijsen et al (2018). An illustration of system dynamics modelling is given in 
Section 3.1.4. 
 
Reliability engineering aims to develop safety barriers in depth, meaning that if one of 
them fails, the system may continue to operate as normal or be brought to a controlled 
stop before an accident occurs. A key element in reliability engineering is redundancy. An 
early example is the use of dual master brake systems on cars. There is one system 
operating on both front wheels and one rear wheel, and a duplicate system operating on 
both front wheels and the other rear wheel. If one system fails, the car will still have a 
working braking system for three of four wheels. 
 
Surveys, including stated preference surveys can be applied as a future-oriented 
method. There have been several surveys of how people view connected and automated 
vehicles and how much they are willing to pay for such vehicles. These studies may serve 
as a basis for assessing potential demand for connected and automated vehicles. 
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Studies of willingness-to-pay, although they are surveys, are listed as a separate 
method. Willingness-to-pay studies are relevant for assessing the potential impacts of 
connected and automated vehicles for at least two of these impacts. The first is whether 
there will be demand for connected and automated vehicles, i.e. are people willing to pay 
the additional costs that will be associated with connected and automated vehicles. If 
not, or if only the richest can afford such vehicles, their market penetration may be slow, 
at least at first. However, the costs of new technology tend to come down over time. The 
second potential impact of connected and automated vehicles where willingness-to-pay 
studies are relevant are impacts on travel time. Connected and automated vehicles may 
change both the length of time taken for a given trip and the quality of that time. Once 
you no longer have to drive yourself, you can spend time on productive activities or on 
relaxing, which is widely believed to reduce the value of travel time savings, as the time 
spent travelling may be felt as less “wasted” than today. 
 
3.1.3 Traffic simulation 
 
Simulating connected and automated vehicles (CAVs) is a multifaceted task. Each CAV is 
a complex entity consisting of multiple subsystems that need to be simulated in order to 
address the challenges arising from the different types of road network layout. The way 
that these subsystems are simulated (i.e. the tools and software used and the underlying 
assumptions) and the achieved level of detail are the criteria that lead to the 
categorisation of existing studies into two major groups: 
 

• Studies using an architecture including traffic sub-microsimulation 
• Studies using traffic microsimulation and an external component 

 
A number of studies have used sub-microsimulation to simulate CAVs (Figueiredo et al., 
2009; Noort, Arem and Park, 2010; Pereira and Rossetti, 2012; Nitsche et al., 2018). A 
sub-micro simulation tool such as PreScan and CarMaker, can simulate all the 
components of the vehicle accurately. This means, for instance, that the sensors of the 
vehicle are simulated individually and that their specifications (such as the scanning 
frequency, or the number of scanning beams) can be directly set. Moreover, they provide 
physical models for the car itself, such as the tyres, suspension and engine. The control 
algorithms for the “actors” of the simulation scenario (i.e. cars, traffic signals, etc.) are 
usually programmed in an external software such as Matlab/Simulink which 
communicates with the sub-micro simulation tool at every simulation step via a 
Transmissions Communication Protocol (TCP/IP), exchanging data. 
 
However, this high level of detail comes at a price. A noteworthy drawback of this 
simulation approach is the high computational needs in order to run the tools of the 
framework simultaneously. This affects the size of experiments, which is relatively small 
compared to ordinary traffic microsimulation, and makes the comparison and 
generalisation of the results challenging. It is envisaged that an approach using a sub-
microscopic simulator can be used to calculate the direct impacts (trip-by-trip basis) in a 
bottom-up simulation approach given that the results of the experiment can be 
transferred and generalised to a larger area such as a city by using scaling parameters. 
Connected and automated freight traffic based on the formation of platoons has some 
potential to impact the durability of roads and the reliability of bridges. While the effect 
on road durability can be avoided by variations in lateral positioning of trucks in the 
platoon, the effect on reliability of bridges is governed by distances between vehicles and 
their weights. The changed load pattern on bridges and its effect on the internal stresses 
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in bridge components can be investigated by using bridge simulation models, like the 
finite element method or analytical models (in case of simple structures). Since the 
reliability of bridges is based on an evaluation of the probabilities that the bridge’s 
internal forces will exceed its bearing capacity during the bridge’s lifetime, probabilistic 
methods (O’Brien et.al., 2015) should be applied to investigate changes in extreme load 
effects due to truck platooning. 
 
The second group of studies aims to address the aforementioned shortcomings regarding 
experiment size and computational needs by using a simpler simulation framework 
architecture. (Li et al., 2013; Jeong, Oh and Lee, 2017; Rahman and Abdel-Aty, 2018; 
Stanek et al., 2018; Papadoulis, Quddus and Imprialou, 2019). In most cases, a 
commercially available traffic microsimulation tool (such as AIMSUN, VISSIM, Paramics 
or SUMO) is used along with an external component. The microsimulation tool is applied 
to represent the infrastructure and creates the traffic in the predefined road system while 
the external component aims to simulate the CATS functionalities. 
 
In both types of simulation framework mentioned above, there is a wide spectrum of 
parameters that can be adjusted (e.g. automation levels, market penetration rates, 
infrastructure-based parameters, CAV functionalities). These parameters could 
potentially formulate an immense number of scenarios. The selection of the ones that are 
most relevant to the project and the specification of their variation range will help reduce 
the computational effort. 
 
3.1.4 System dynamics 
 
Owing its heritage to control theory, system dynamics is a modelling technique where the 
whole system is modelled by modelling the sub-systems at component levels and 
aggregating the combined output. These sub-system components are defined by simple 
algebraic relationships and sometimes differential equations. These can be linear or non-
linear in nature. The relationships can be continuous or discrete time events. Any 
feedback loops within the system (between the components) are captured through the 
sub-system equations that are defined. The behaviour of the whole system emerges from 
simulating the entire system level model that contains sub-systems. This technique is 
very useful in modelling management and social systems because their dynamics are 
generally of high order and non-linear and therefore cannot be represented by a single 
set of equations.  
 
To illustrate the capabilities of system dynamics modelling, land use for housing was 
modelled in its simplest form. 
 
Problem definition 
What will be the effects of level 5 autonomous vehicles on land use for housing in a city 
that can be considered in zonewise sections? 
 
Specifications 

• Three zones were considered. Zone 1 was considered to be densely populated 
(city centre), Zone 2 was considered moderately populated (immediate zone 
outside city centre) and zone 3 was considered lightly populated (suburban area). 

• Only Level 5 autonomous vehicles are thought to be able to drive themselves 
without any human intervention. This means that only those with access to level 5 
AVs will consider relocating to a cheaper place for economic savings. 
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Figure 1: Schematic showing hypothetical city zones. 

 
Assumptions and initial values 
 

• Level 5 autonomous vehicles allow teleworking. However, the maximum time one 
is willing to spend inside the car is limited to certain level due to physical 
restrictions of movements inside the car. This maximum time was not considered 
at this stage. 

• Everyone is assumed to be able to work during their commuting. However, only 
desk-based jobs can be done by telework. 

• There is limited housing available and so the housing cost increases as population 
density increases. 

• In practice, there is a delay between making the decision to relocate and actually 
relocating, which requires finding a house and arranging the necessary financial 
means. Here, it was assumed that there is no delay for simplicity. 

• Usually, there is threshold in making the decision to relocate on the grounds of 
financial gain. Here, it was not implemented for now, again for simplicity. 

• There is no effect of travel demand on increase in traffic. So, travelling time is not 
affected by change in population density in various zones. 

• Total population is steady over the time. The increase in population due to net 
birth rate was not considered for simplicity. 

• Initial population = 3138500, 1225200 and, 550000 for zone 1, zone 2 and zone 
3, respectively. 

• Net emigration (or immigration) in the city was considered to be 0. 
• Working days = 260 days/year. 
• Average salary = 25 euros/hour. 
• Average housing costs = 15000, 12000 and, 10000 euros per year in zone 1, 

zone 2 and zone 3, respectively. 
• Everyone is working in the city centre, so commuting distances are set 

accordingly to reflect this. Average commuting distances are set to 5, 10 and, 20 

Zone 1 

Zone 2 

Zone 3 

𝑅𝑅𝑧𝑧1−2 

𝑅𝑅𝑧𝑧1−3 

𝑅𝑅𝑧𝑧2−3 
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km for zone 1, zone 2 and zone 3, respectively. Also, the working population is 
thought to be steady, i.e., not ageing. 

• Average travelling speed = 10, 15 and, 20 km/hr for zone 1, zone 2 and zone 3, 
respectively. 

• Travelling cost per km = 0.2 euros/km. 
• AVs are introduced at time = 10 years. This is done as a step change from 0 to 

X%. 
• Total simulation is run for 20 years. 
• Simulation time step is 1/52 year. 

 
Model structure 
 

 
Figure 2: Model structure of zone wise population 

 
Figure 2 shows the overall model structure of the population relocation within zone 1, 2 
and 3. The rate at which the population is relocating is defined by 𝑅𝑅𝑖𝑖↔𝑗𝑗. This rate is 
affected by the level of population such that if population is high, the rate of relocation is 
high since the AVs are introduced percentage wise. The rate of relocation is also affected 
by the cost of living, as this is the deciding step where comparison of costs is made and 
people are thought to move to a cheaper zone for economic gains. Here, it should be 
noted that in reality, there will be a threshold below which people would not relocate in 
order to save money. Savings of less significant amount will not be worthwhile 
considering the effort required for relocation. However, for simplicity, it is assumed that 
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people start to relocate in the direction dictated by a positive or negative value of the 
relocation rate. 
 
 

 
Figure 3: Flow diagram of cost of living 

 
Figure 3 shows model structure of cost of living that is used in Figure 2. This is replicated 
for zone i = 1 to 3. It should be noted that the cost of housing has negative feedback 
from population such that increase in population in the zone will mean there will be an 
increase in demand for the house and therefore, house price will increase. The increased 
cost of housing means overall cost of living will also increase and will have a negative 
effect on population (since people are moving out) and therefore, the housing price will 
start to decrease again as a result. This is identified as a balancing loop. 
 
It should be noted that population in each zone is divided into ones that own L5 AVs and 
ones that do not own L5 AVs. Following the above model structure, the following 
equations can be defined. 
 
𝐴𝐴𝐴𝐴 𝑃𝑃𝑂𝑂𝑂𝑂𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 𝑖𝑖 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 𝑖𝑖 × 𝐴𝐴𝐴𝐴 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟; 
 
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑃𝑃𝑃𝑃𝑃𝑃𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 𝑖𝑖 = 1 − 𝐴𝐴𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 𝑖𝑖; 
 
(𝑃𝑃𝑃𝑃𝑃𝑃𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 𝑖𝑖)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = (𝑃𝑃𝑃𝑃𝑃𝑃𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 𝑖𝑖)𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑅𝑅𝑖𝑖↔𝑗𝑗 × ∆𝑡𝑡; 
 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝐴𝐴𝐴𝐴 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 = �2 × 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦
� ×

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 × 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑝𝑝𝑝𝑝𝑝𝑝 𝑘𝑘𝑘𝑘; 
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𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑝𝑝𝑝𝑝𝑝𝑝 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 = �2 × 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦

� ×

�(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 × 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑝𝑝𝑝𝑝𝑝𝑝 𝑘𝑘𝑘𝑘) +

(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑝𝑝𝑝𝑝𝑝𝑝 ℎ𝑜𝑜𝑜𝑜𝑜𝑜×𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝐴𝐴𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

)�; 
 
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 × 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 × (𝑃𝑃𝑃𝑃𝑃𝑃𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 𝑖𝑖)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

(𝑃𝑃𝑃𝑃𝑃𝑃𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 𝑖𝑖)𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
; 

 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑜𝑜𝑜𝑜 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝𝑝𝑝𝑝𝑝 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑓𝑓𝑓𝑓𝑓𝑓 𝐴𝐴𝐴𝐴 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝐴𝐴𝐴𝐴 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 +
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦; 
 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑜𝑜𝑜𝑜 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝𝑝𝑝𝑝𝑝 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑓𝑓𝑓𝑓𝑓𝑓 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 +
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦; 
 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑜𝑜𝑜𝑜 𝐴𝐴𝐴𝐴 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐴𝐴𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 𝑖𝑖 × �1 − �𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑜𝑜𝑜𝑜 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝𝑝𝑝𝑝𝑝 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑓𝑓𝑓𝑓𝑓𝑓 𝐴𝐴𝐴𝐴 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 𝑖𝑖

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑜𝑜𝑓𝑓 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝𝑝𝑝𝑝𝑝 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑓𝑓𝑓𝑓𝑓𝑓 𝐴𝐴𝐴𝐴 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 𝑗𝑗
��; 

 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑜𝑜𝑜𝑜 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑃𝑃𝑃𝑃𝑃𝑃𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 𝑖𝑖 × �1 − �𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑜𝑜𝑜𝑜 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝𝑝𝑝𝑝𝑝 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑓𝑓𝑓𝑓𝑓𝑓 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 𝑖𝑖

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑜𝑜𝑓𝑓 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝𝑝𝑝𝑝𝑝 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑓𝑓𝑓𝑓𝑓𝑓 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 𝑗𝑗
��; 

 
𝑅𝑅𝑖𝑖↔𝑗𝑗 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑜𝑜𝑜𝑜 𝐴𝐴𝐴𝐴 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑜𝑜𝑜𝑜 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜; 
 
Here, i is zone number of the quantity being calculated and j is the zone number to which 
it is compared. Positive value of 𝑅𝑅𝑖𝑖↔𝑗𝑗 means that the population is going from zone i to j 
and opposite is true if negative. 
 
During simulation, the above equations were repeated for time, 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 to 𝑡𝑡𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 in ∆𝑡𝑡 steps. 
 
In addition, as mentioned in assumptions and initial conditions, 𝐴𝐴𝐴𝐴 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 was 
considered to be 0 before year 10 and x% after year 10. X% being 10%, 20%, and so 
forth up to 100%. The model was simulated for time frame of 20 years. 
  
Results 
 
As shown in Figure 4, the zone wise population was initially concentrating towards the 
city centre as evident by increase in population in zone 1 and 2 and decrease in 
population in zone 3. The L5 AVs were introduced after technology was mature. For this 
reason, year 10 was chosen. It should be noted that only 3 cases, L5 AV 0%, 50% and 
100% are shown in Figure 4. 
 
The model did not have any mathematical equation that suggested any sinusoidal 
behaviour in population dynamics. The effect seen in Figure 4 is purely due to two 
feedbacks, one from population to rate of relocation and other one from population to 
housing cost. It is possible to minimise oscillations by carefully choosing the values of the 
economic penalty such that the relocation is dampened and people do not move in and 
out of the zone frequently. 
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Figure 4: Zone wise population, their relocation rates due to L5 AVs and overall relocation rates. 

 
Once a working model is obtained, one can extend that to other questions such as what 
would be the effect of zonewise road pricing on land use for housing, what would be the 
effect on emissions due to change in land use for housing due to L5 AVs, etc. 
 
It is clear that zones 2 and 3 became more attractive to live in when L5 AVs were in the 
fleet. The value of time (salary considered as office time was invested in commuting) 
outweighed the travelling costs due to longer distance. So, as the L5 AV penetration 
increased the population in zone 1 progressively decreased and the population in zone 2 
increased (Figure 5).  
 
Population density was calculated by assuming that the zones are concentrically arranged 
as shown in Figure 5. 
 
It must be noted that this model is only an illustrative example to demonstrate the 
techniques of system dynamics. It is far from realistic and no conclusions may be drawn 
from the results. It is intended only to show the potential for analysis by using system 
dynamics. To develop realistic forecasts several elements of the model would need to be 
refined. Currently, many land use and transport interaction (LUTI) models exist and 
some of them were created using system dynamics and validated using real city data 
(Pfaffenbichler, Emberger, & Shepherd, 2010; Shepherd, 2014). It would be possible to 
adapt those models to include AVs as an additional element and look at the effect on land 
use. 
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Figure 5: Percentage change in population in zone 1, 2 and 3 as an effect of introduction of L5 AVs. 

 

3.2 Which methods are suitable for which impacts? 
Surveys and studies of willingness-to-pay are well-suited for estimating the likely 
demand for automated vehicles and how fast they will penetrate the market. Surveys are 
also well-suited for studying trust in technology. 
 
To the extent that studies applying traffic simulation have estimated various impacts of 
connected and automated vehicles, formal syntheses of such studies by means of meta-
analysis is a suitable method. 
 
Mesoscopic simulation and activity-based-modelling are well-suited for assessing modal 
split, road network loads and vehicle utilisation rate. 
 
Operations research methods are widely used for freight transport, such as optimisation 
algorithms for fleet management and tour planning. For example, a typical parcel 
delivery problem requires to calculate the fastest tours from a given depot to service a 
set of customers. Freight transport is plannable and therefore it is reasonable to assume 
that freight operators optimise their business according to market-economic principles. 
In comparison, passenger transport is based on individual preferences. This makes it 
impossible to plan exactly, hence simulation is a more reasonable approach to assess the 
performance of the passenger transport system. Besides freight transport, fleet and tour 
optimisation can also be applied to urban shuttles applications. Like freight transport, 
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shuttles are operated by, e.g., a public transport authority, which makes them plannable. 
With given requirements such as passenger demand and the area of operation, the ideal 
fleet and routes can be optimised. 
  
Methods for fleet and tour optimisation primarily assess the direct impacts such as 
vehicle operating costs and freight transport costs. Furthermore, since the actual routes 
of freight vehicles are generated and evaluated, wider impacts such as air pollution and 
noise pollution can be obtained or upscaled from simulation. 
 

3.3 Combining methods 
All methods listed above are at least potentially relevant for predicting the impacts of 
CATS. An integrated method for prediction, by which is meant a method that is able to 
predict as many potential impacts of CATS as possible, confer the list of potential impacts 
given Chapter 2, can only be developed by combining several methods. 
 
To give an example: Several studies have used traffic simulation to estimate the 
potential impacts of CATS on road capacity. The feasibility of combining the results of 
these studies can be assessed by means of an exploratory meta-analysis. The key 
criterion is whether the studies produce similar results. If they do, it makes sense to 
combine them and estimate a mean effect. The differences in results between different 
studies will then serve as an indicator of the uncertainty surrounding the mean effect. 
 
However, a high level of heterogeneity in results by itself may not always prevent a 
formal synthesis; likewise, similarity in results can be coincidental. It is therefore 
necessary to examine every study critically. In particular, results of traffic simulation 
depend strongly on the assumptions made. The realism of the assumptions must always 
be assessed. 
 
Few, if any, of the studies of the potential increase in road capacity associated with CATS 
have considered a potential rebound effect. To estimate the rebound effect, studies of 
the elasticity of vehicle kilometres of travel with respect to road capacity can be applied. 
Again, if these studies produce similar estimates, combining them makes sense. If 
estimates vary widely, a choice must be made regarding which studies are 
methodologically most rigorous. 
 
Another way to utilise traffic simulation is to upscale partial results with operations 
research methodologies. As mentioned in the previous section, fleet and tour 
optimisation will compute the actual routes of each individual CAV if the operation is 
plannable. Therefore, for some use cases within freight transport such as e.g. automated 
urban delivery, it is possible to simulate the performance of an automated freight vehicle 
in small scenarios and upscale the results to the full route. These scenarios must be 
representative and cover the realistic use case as well as possible, e.g., a route of 3 km 
in a typical city center area or a suburb area and under certain traffic load. If tour 
optimisation computes a full route of 30 km for a freight vehicle, the overall performance 
can be obtained by combing several simulated scenarios. A flowchart of this type of 
combination is illustrated in Figure 6. 
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Figure 6: Flow chart for route optimization in freight transport. 

 
The next chapter explains how quantitative relationships describing potential impacts of 
CATS can be developed. 
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4 Estimating and quantifying 
primary impacts 

 

The objective of this chapter is to show how potential primary impacts of 
connected and automated vehicles can be estimated and quantified. Primary 
impacts are the intended impacts of automation technology; the benefits it is 
intended to bring about. The main approach taken in the chapter is to quantify 
impacts as dose-response curves using the market penetration rate of 
automation technology as the dose and the size of an impact as the response. 
The chapter presents dose-response curves estimated on the basis of studies 
identified in a literature review. Not all primary impacts can be represented by 
means of dose-response curves. Other approaches that can be used for 
quantifying impacts are discussed. The next chapter discusses secondary 
impacts (unintended behavioural adaptation) of connected and automated 
vehicles. 

 
This chapter develops quantified relationships describing the impacts of connected and 
automated vehicles. It is shown how the following impacts can be quantified: 
 

1. Road capacity (for sections and junctions) 
2. Congestion 
3. Travel time 
4. Valuation of travel time 
5. Individual access to travel 
6. Use of shared mobility services 
7. Road safety 
8. Fuel consumption and emissions 
9. Vehicle ownership costs 
10. Willingness-to-pay for automation technology 

 
Most of these impacts are quantified as dose-response curves, which have the market 
penetration rate of automated vehicles as the dose and the size of an impact as the 
response. All these impacts are uncertain, and the range of estimates found in available 
studies is an indicator of uncertainty. First, a framework for quantification is proposed. 
 

4.1 A framework for quantifying impacts of CATS 
Most statistical analyses designed to estimate the impacts of technology rely on real-
world data, e.g. the actual accident involvement of cars with electronic stability control 
compared to cars without the system. Real-world CATS data are still in their infancy and 
do not reflect the system-wide impacts associated with a high market penetration rate of 
automation technology. An alternative to real-world data is to utilise simulated data and 
then apply statistical methods to forecast impacts. In Levitate, simulation can provide the 
data that are needed to forecast short, medium and long term CATS impacts. 
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The first step is to develop statistical models of the relationship between an impact 
category (e.g. safety) and its predictors (e.g. market penetration rate of CATS by level of 
autonomy, demand for CATS, types of new mobility services supported by CATS) for 
different types of traffic environment. These statistical models will be based on the 
simulated data obtained from a wide range of simulation scenarios. Table 2 gives an 
example of a hypothetical scenario describing how travel demand (vehicle kilometres of 
travel) and speed variation changes as a function of levels of implementation of 
automation technology. 
 
In the current condition, the level of implementation of automation technology is set to 
zero, i.e. all vehicles are manually operated, but may have driver support systems 
already on the market and in wide use, like electronic stability control. To develop a 
scenario, assumptions are made regarding the mix of vehicles at different levels of 
automation in the short, medium and long term. In Table 2, it is assumed that in the 
long term, there will be vehicles at all SAE automation levels from 1 to 5 in an almost 
equal mix (bottom row of Table 2). It is further assumed that 70 % of vehicles will be 
connected. For both the short-, medium- and long term three forecasts are developed: 
average, pessimistic and optimistic. This gives a range of potential impacts. 
 

Table 2: Potential impacts of CATS on travel demand and speed variation as a function of levels of 
implementation of automation technology. 
 

Scenarios Simulation Input Variables 

    

Overall Traffic 
Demand 

SAE 
level 

0 
MPR 

SAE 
level 

1 
MPR 

SAE 
level 

2 
MPR 

SAE 
level 

3 
MPR 

SAE 
level 

4 
MPR 

SAE 
level 

5 
MPR 

Network Speed 
Distribution 

% Connected 
Vehicles 

Baseline 
Model 

(present) 

Current 
Condition 

Real-world 
traffic demand 

data 
100% 0% 0% 0% 0% 0% Real-world data 0% 

Short 
Term 

Pessimistic 6% increased 90% 4% 2% 2% 1% 1% 5% less s.d. 5%  
Average 4% increased 80% 6% 4% 4% 3% 3% 10% less s.d. 10%  

Optimistic 2% increased 70% 8% 6% 6% 5% 5% 15% less s.d. 15%  

Medium 
Term 

Pessimistic 12% increased 60% 10% 8% 8% 7% 7% 20% less s.d. 20%  
Average 10% increased 50% 12% 10% 10% 9% 9% 25% less s.d. 30%  

Optimistic 8% increased 40% 14% 12% 12% 11% 11% 30% less s.d. 40%  

Long 
Term 

Pessimistic 18% increased 30% 16% 14% 14% 13% 13% 35% less s.d. 50%  
Average 16% increased 20% 18% 16% 16% 15% 15% 40% less s.d. 60%  

Optimistic 14% increased 10% 20% 18% 18% 17% 17% 45% less s.d. 70%  
 
The relationships given in Table 2 may in principle be stated in the form of a predictive 
equation like this: 
 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 = 𝑏𝑏0 + 𝑏𝑏1 ∗ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝1𝑖𝑖 + 𝑏𝑏2 ∗ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2𝑖𝑖+ . . . + 𝑏𝑏𝑛𝑛 ∗ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑛𝑛 + 𝑢𝑢𝑖𝑖          ( 1) 

 
In equation (1) impact i is the dependent variable. It can be the impact on safety, road 
capacity, travel time, etc. The predictors may include market penetration rate of SAE 
automation levels 1-5, or changes in traffic demand. The aim of the approach is to 
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combine all the statistical models created for each road network element in order to 
create an integrated impact assessment toolbox that could be used by WP8 in the Policy 
Support Tool. Using this toolbox, a city or an organisation can input their own data (e.g. 
traffic demand data) for the corresponding market penetration rate that they want to 
investigate or forecast for their city and calculate the impact. The challenges arising 
when developing these models include the selection of the appropriate predictors as well 
as the selection of the appropriate functional form for the relationship between a 
predictor and an impact. 
 
There is, as noted already, uncertainty about how fast automation technology will 
penetrate the market. Thus, many different assumptions can be made about this.  
To keep estimation of dose-response curves analytically tractable, the following 
guidelines are proposed: 
 

1. The dose is stated as the percentage market penetration of automated vehicles, 
i.e. vehicles with at least SAE level 3 automation technology, but preferably level 
5 automation technology. 

2. The response is stated as the percentage change in an impact indicator associated 
with different percentage levels of market penetration of automated vehicles. 

3. One impact is modelled at a time, i.e. each dose-response curve refers to a single 
impact, preferably a single indicator of an impact. 

 
The next sections present the dose-response curves that have been developed so far. It 
is envisaged that the more dose-response curves than those presented in this report will 
be developed during the Levitate project. 
 

4.2 Road capacity 
4.2.1 Motorways 
 
Simulation studies or mathematical models developed by Tientrakool et al. (2011), 
Fernandes and Nunes (2012), Shladover et al. (2012), Atkins (2016), Ye and Yamamoto 
(2018) and Shi, He and Huang (2019) have estimated changes in road capacity as a 
function of market penetration of high level automation technology. All these studies 
refer to the capacity of a driving lane on a motorway. The results of the studies vary and 
depend on the specific assumptions made about, among other things, distance between 
vehicles, vehicle dimensions, mean speed, and deceleration.  
 
To illustrate the importance of the assumptions made for the results of the study, a 
couple of examples will be discussed in detail. Tientrakool et al. (2011) divide vehicles 
into three groups: 
 

1. Manual vehicles 
2. Vehicles with sensors but no technology to communicate with other vehicles 
3. Vehicles with sensors and technology for communicating with other vehicles 

 
The first type of vehicles represents current technology. The third type of vehicle 
represents a low level automation technology. Manual vehicles are assumed to follow 
each other with a (mean) time headway of 1.1 seconds. The following distance in metres 
then becomes: 
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Dm = 1.1 ∙ V/3.6 
 
V is speed in kilometres per hour. Dividing this by 3.6 gives speed in metres per second. 
Thus, if speed in km/h is 60, the following distance becomes: 
 
Following distance in metres = 1.1 ∙ 60/3.6 = 18.3 metres. Following distance is the 
distance between the rear of vehicle 1 (the first in a row of vehicles) and the front of 
vehicle 2 (the second in a row of vehicles). The length of a vehicle was assumed to be 
4.3 metres. Traversing a line across the road will take a vehicle 0.26 seconds at a speed 
of 60 km/h (at this speed, a vehicle travels 16.67 metres per second; traveling the 
length of the vehicle thus takes 4.3/16.67 = 0.258 seconds). Thus, serving one vehicle 
at the assumed following distance will take 1.1 + 0.26 = 1.36 seconds. Hourly capacity is 
3600/1.36 = 2647 (3600 is the number of seconds per hour). 
 
It is immediately seen that if a following distance of 1.5 seconds, a speed of 40 km/h and 
a vehicle length of 5 metres had been assumed, estimated road capacity would have 
been different (under these assumptions it would have been 1846). Different 
assumptions about the initial road capacity lead to different estimates of the increase in 
capacity that can be attained by spacing vehicles more densely or by assuming that they 
can communicate and react faster to changes in speed than a human driver. 
 
Tientrakool et al. (2011) assume that for vehicles that can communicate, the following 
distance can be shortened and set equal to the distance traversed during the reaction 
time of the communication system. They assume a communication delay of 0.181 
seconds. At a speed of 100 km/h, this translates into a following distance of 5.0278 
metres. Tientrakool et al. (2011) estimate that lane capacity per hour can be increased 
from 2869 with only manual vehicles to 10721 with 100 % communicating vehicles. The 
paper by Fernandes and Nunes (2012) reaches similar conclusions about the potential for 
increasing road capacity by means of connectivity and platooning. 
 
They estimate an increase in lane capacity of up to 175 % at a speed of 36 km/h for 
platoons of vehicles consisting of up to 20 vehicles per platoon, spaced by only 1 metre. 
Each vehicle was assumed to be 3 metres long, which is shorter than virtually all cars 
found in traffic today. It is likely that the potential increase in capacity would be smaller 
if there is a mix of vehicles of different lengths. At a speed of 72 km/h, the maximum 
potential increase in lane capacity was estimated to be 370 %, meaning that capacity 
increases almost by a factor of five. Fernandes and Nunes give the following formula for 
road capacity: 
 

C = 𝑣𝑣 𝑛𝑛
𝑛𝑛𝑛𝑛+(𝑛𝑛−1)𝑑𝑑+𝐷𝐷

 
 
C is capacity, indicated as vehicles passing per second (to obtain hourly volume, multiply 
by 3600), n is the number of connected cars in each platoon (1 if cars drive 
independently and are not platooned), s is vehicle length in metres (it can be the 
average value of vehicles differing in length), v is speed in metres per second, d is 
intraplatoon spacing in metres, and D is spacing between platoons in metres.  
 
To give an example, assume that no vehicles are connected (n = 1), that they drive at 
40 km/h (11.1 metres per second), that mean length is 6 metres, and that mean time 
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headway is 2 seconds (equal to 22.2 metres). The factor d drops out (is set to zero), 
whereas D represents headway. We get: 
 
C = 11.1 1

1∙6+0+22.2
= 0.3936 

 
This corresponds to an hourly capacity of 1417 (0.3936 ∙ 3600). Now assume that 
vehicles are connected in platoons each consisting of 15 cars (n = 15). The spacing of 
cars within each platoon is 2 metres (d = 2). The spacing between platoons is 55.6 
metres (5 seconds), allowing pedestrians to use the gap between two platoons to cross 
the road. We now get: 
 
C = 11.1 15

15∙6+14∙2+55.6
= 0.9591 

 
This corresponds to an hourly capacity of 3452 vehicles. By varying the assumptions 
made, it is possible to estimate changes in capacity for different speeds, different vehicle 
lengths, different lengths of platoons, different spacing within platoons and different 
spacing between platoons. Thus, the framework provided by Fernandes and Nunes 
(2012) is very flexible. 
 
Each of the studies listed above provides an estimate of road capacity for various levels 
of market penetration of connected and automated vehicles. These estimates can be 
plotted in a diagram with market penetration rate as abscissa (horizontal axis) and 
change in road capacity as the ordinate (vertical axis). Figure 7 shows a curve fitted to 
the results of the studies of Tientrakool et al. (2011) Fernandes and Nunes (2012), 
Shladover et al. (2012), Atkins (2016), Ye and Yamamoto (2018) and Shi, He and Huang 
(2019).  
 
The curve was fitted to the data points by examining which of several functional forms 
best fitted the data points. The following functional forms were compared: linear, 
exponential, logarithmic, and polynomial. For the data points in Figure 7, a second 
degree polynomial was found to best fit the data points. All data points have the same 
weight. It was not possible to assign a unique statistical weight to each data point based 
on its statistical precision, as estimates of the precision of data points are not 
consistently reported in the primary studies. It is nevertheless possible to assess 
informally whether summarising the data points in terms of a dose-response curve 
makes sense and is a representative summary of the data points. 
 
First, does the fitted curve pass through the range of data points, i.e. does it have both 
positive and negative residuals? It is seen that the curve fitted to the data points in 
Figure 7 satisfies this criterion. Second, if there are enough data points, their distribution 
can be studied by means of tools for exploratory analysis in meta-analysis, such as stem-
and-leaf plots (Elvik and Ramjerdi 2014). A stem-and-leaf plot can give an indication of 
whether estimates are symmetrically distributed and whether there are outliers. Some of 
the data points in Figure 7 appear to be outliers, as indicated by the dashed area. These 
data points were included when the function was fitted. 
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Figure 7: Dose-response curve for changes in road capacity as a function of market penetration of high level 

automation technology 

 
It is seen that results are perfectly consistent, in that all studies predict an increase in 
road capacity. The dispersion of the data points is also quite small up to 60% market 
prenetration rate for connected and automated vehicles. At higher market penetration 
rates, the early studies of Tientrakool et al. (2011) and Fernandes and Nunes (2012) 
predicted a considerably larger increase in road capacity than subsequent studies. The 
dispersion of the data points is an indication of uncertainty, which includes the impacts 
on study results of differences between studies with respect to the assumptions made 
about speed, acceleration, deceleration, platoon length, etc. It is seen that uncertainty 
increases at higher rates of market penetration of connected and automated vehicles. 
The function fitted predicts a reduction of road capacity at low penetration rates of 
automated vehicles. 
 
It is important to note that all dose-respanse curves, like the one fitted in Figure 7, apply 
only when all else is equal (commonly referred to as ceteris paribus). This means, for 
example, that there is no change in road layout and no change in traffic volume. The 
curve only shows that it is possible to serve a larger number of connected and automated 
vehicles than the number of human driven vehicles. 
 
All studies included in Figure 7 refer to lanes on motorways. However, the most common 
type of road in most countries is a rural, undivided two-lane road. On this type of road, 
there will be a transition period during which a mixture of manual and automated 
vehicles will share the road. Automated vehicles will then have to adopt headways that 
allow them to stop, or at least greatly reduce speed when the vehicle in front of them, 
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possibly a manually operated vehicle, brakes or stops. The choice of headway in this 
situation can be treated as a tradeoff between capacity and safety, to which an optimal 
solution in principle exists (Liu et al. 2020). If long headways are adopted, road capacity 
is reduced and there may be delays and congestion. If short headways are adopted, 
there will be rear-end collisions. Liu et al. (2020) assigned monetary values to delays and 
rear-end collisions in order to determine the following distance that miminised the sum of 
the costs of delays and collisions. They assumed that automated vehicles will have a 
reaction time of 0.2 seconds and decelerate at 5 metres per square second. Using data 
on accidents, traffic speed and following distances from two highways in the United 
States, they found that optimal following distances were between 63 and 89 feet (19 and 
27 metres). Lane capacity would then be between 1888 og 2080 vehicles per hour. 
 
Various scenarios were developed, but the shortest following distances were in no case 
shorter than about half of the distances found in the baseline scenario. This study 
suggests that a doubling of road capacity is likely to be largest attainable effect if it is 
assumed that automated vehicles must keep sufficient following distance to be able to 
stop or minimise accident severity in a given situation. As long as there is a mixture of 
automated and manual vehicles, the choice of following distance will be a tradeoff 
between safety and capacity. It is only when 100% market penetration of connected and 
automated vehicles has been reached that this tradeoff can be resolved by prioritising an 
increase in road capacity exclusively. 
 
4.2.2 Junctions 
 
Atkins (2016) modelled changes in capacity in signalised junctions and roundabouts as a 
function of the market penetration of automated vehicles. The dose-response curves 
fitted to their results are shown in Figure 8. 
 
Junction capacity was estimated to increase by about 40% in roundabouts and nearly 
30% in signalised junctions. It seems reasonable that the increase in junction capacity 
will be smaller than the increase in lane capacity, as connectivity and platooning are 
unlikely to be applicable in junctions. Le Vine, Zolfaghari and Polak (2015) note that 
travel comfort in automated cars may be experienced as low if they drive like a human 
driver. Passengers in cars experience acceleration, braking and turning as more violent 
and less comfortable than drivers do. 
 
If automated cars are programmed to have acceleration and deceleration equal to that of 
light rail or long distance rail, the capacity of signalised junctions will be reduced. 
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Figure 8: Dose-response curves for changes in junction capacity as a function of market penetration of 

automated vehicles 

 

4.3 Congestion 
4.3.1 Road sections 
 
When the capacity of road sections and junctions increases, congestion may be reduced. 
Potential impacts of connected and automated vehicles on congestion delays have been 
studied by Atkins (2016) and Kockelman et al. (2018). A dose-response curve fitted to 
the average results of their studies is shown in Figure 9. 
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Figure 9: Dose-response curve for changes in delays caused by congestion 

 
The dose-response curve passes through the data points and is a representative 
summary of the results. At 100% market penetration of automated vehicles, congestion 
delays can be reduced by about 25%. The dispersion of data points around the curve 
fitted to them reflects differences in the precise definition of congestion and in congestion 
severity. On roads that regularly become congested, usually about 20-30% of traffic is 
congested. 
 
4.3.2 Junctions 
 
When junction capacity increases, one should expect delays to be reduced, all else equal. 
Studies by Atkins (2016) and Morando et al. (2018) find that this is the case, but their 
results differ substantially and vary according to whether junctions are signalised or 
roundabouts. Results for roundabouts are shown in Figure 10. 
 
Both studies find that delays will be reduced in roundabouts. According to Atkins (2016) 
the maximum reduction of delays is a little more than 20%. According to Morando et al. 
(2018), maximum reduction of delays is 50%. The shape of the dose-response curves 
also differs. The curve fitted to the study by Atkins suggests an accelerating reduction of 
delays as market penetration of automated vehicles increases. The curve fitted to the 
study of Morando et al. suggest that reductions in delays will be fast when automated 
vehicles start to penetrate the market, but then slow down as these vehicles reach 100% 
market penetration. Note that this refers to the level of market penetration only, and 
says nothing about how fast or slow in time the market penetration of automated vehicle 
will be. 
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Despite these differences, the studies agree that delays are likely to reduced. 
 

 
Figure 10: Dose-response curve for changes in delays in roundabouts 

 
Figure 11 shows results for signalised junctions. Both studies conclude that delays will be 
reduced, but the reductions are much smaller than in roundabouts. According to Atkins 
(2016) the maximum reduction in delays is about 5%. According to Morando et al. 
(2018) the maximum reduction in delays is about 16%. The shape of the dose-reponse 
curve is the same for both studies: a second degree polynomial suggesting that 
reductions in delays are greatest at the beginning and then slow down. 
 
One may wonder whether signalised junctions will be needed when all vehicles are 
automated. Surely, the vehicles will have vehicle-to-vehicle communication systems 
which can decide which vehicle has priority. However, it may still be necessary to stop all 
vehicles to enable pedestrians to cross the road. 
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Figure 11: Dose-response curves for delays in signalised junctions 

 

4.4 Travel time 
Changes in mean travel time as a result of vehicle automation has been studied by Atkins 
(2016) and Booz Allen Hamilton et al. (2018). The results of these studies, and a dose-
response curve fitted to average results, are shown in Figure 12. 
 
Estimates are a mixture of those applying to congested conditions and those applying to 
non-congested conditions. Combining estimates referring to these conditions reflects the 
reality that part of traffic is in congested conditions, part of it in non-congested 
conditions. One might apply weights, by assuming, for example, that 25% of traffic is 
congested and 75% non-congested. However, at the current stage of analysis, emphasis 
is on exploring whether different studies give sufficiently similar results that averaging 
and combining them makes sense. From that point of view, the function fitted to the data 
points in Figure 12 makes sense. It passes right through the data points. It suggests that 
a maximum saving in travel time of about 17% is possible. This might seem surprisingly 
small compared to the potential increase in road capacity shown in Figure 7. However, it 
should be remembered that most of the time, there is spare capacity on most roads. 
Most of traffic is not delayed by congestion. 
 
Besides, if it assumed that automated vehicles will comply with speed limits, these limits 
represent an upper bound on how large savings in travel time it is possible to 
accomplish. Against this background, it does not seem unrealistic that the savings in 
travel time are likely to be less than 20%. 
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Figure 12: Dose-response curve for change in mean travel time. 

 

4.5 Valuation of travel time 
Fully automated vehicles are expected to lead to a lower valuation of travel time, since 
travel time can be used productively or for relaxing. It will then be felt as less wasted 
than today, when a car driver has to concentrate of the driving task and has few 
opportunities for engaging in other activities. 
 
There are few empirical studies of the valuation in travel time in automated vehicles, and 
the few that exist obviously only produce hypothetical findings, as automated vehicles 
are still not in widespread use. Table 3 summarises the results of delphi surveys and 
stated preference studies of the valuation of travel time in automated vehicles. 
 
Willumsen and Kohli made a Delphi survey of 45 transport experts and asked them about 
changes in the valuation of travel time associated with vehicle automation. They made a 
distinction between commuting trips, trips made as part of work and other trips (leisure 
trips). As can be seen from Table 3, the mean values of travel time given by the experts 
indicated a relative reduction of about 15% regardless of trip purpose. 
 
Kolarova et al. (2018) studied the value of travel time savings in conventional and 
automated vehicles. They found that the value of time in a private automated vehicle 
was about 45-55% lower than in a conventional private car. In a driverless taxi, the 
value of time was about 15-35% lower than in a conventional private car. 
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Table 3: Relative valuation of travel time in automated vehicles. Current valuation = 100. 
 

Study Vehicle use Current valuation of travel time = 100 

  Commute In work Leisure Mean 

Willumsen, Kohli 2016 Individual 84.1 87.1 85.2 85.5 

  Low inc Middle inc High inc Mean 

Kolarova et al. 2018 Individual 45.4 44.3 57.8 49.2 

 Shared 69.0 67.3 87.7 74.7 

  Low inc Middle inc High inc Mean 

Steck et al. 2018 Individual 69.4 69.5 69.5 69.5 

 Shared 90.0 90.0 90.0 90.0 

  Driver Passenger  Mean 

Flügel et al. 2019 Individual 69.6 44.6  57.1 

 Shared 79.0 88.1  83.8 

All studies Individual    65.3 

 Shared    82.8 

 
The study by Steck et al. (2018) is very similar to the study by Kolarova et al. (2018), 
but the results differ slightly. A reduction of the valuation of travel time in automated 
vehicles of about 30% was estimated for individual use of the automated vehicles. For 
shared use, the reduction in the valuation of travel time was 10%. Flügel et al. (2019) 
made a stated preference study. The mean reduction in the value of travel time savings 
was a little more than 40% for individual use of automated vehicles and around 15% for 
shared use of automated vehicles. 
 
The results of studies comparing individual and shared use of automated vehicles are 
consistent. All studies show a larger reduction of the value of time for individual use, 
suggesting that individual use of automated vehicles will be felt as more comfortable 
than shared use. 
 
The studies suggest that, as a first approximation, one may assume a 35% reduction of 
the value of travel time saving for individual use of automated vehicles, with a lower limit 
of 15% and an upper limit of 50%. For shared use of automated vehicles, a mean 
reduction of the value of travel time savings of 15% is suggested, with a lower limit of 
10% and an upper limit of 25%. 
 

4.6 Individual access to travel 
A potential advantage of fully automated vehicles is that they make individual travel 
accessible to groups who are not allowed to drive, either because they are below the age 
limit (children), have impairments that exclude them from obtaining a driving licence, or 
have simply opted not to acquire a licence. It is possible to estimate the potential 
increase in travel enabled by automated vehicles by using statistics on the share of the 
population who has a driving licence. Such statistics are often collected in household 
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travel surveys. To give an example of how these statistics can be used to assess the gain 
in access to travel, a Norwegian household travel survey will be used (Hjorthol, 
Engebretsen and Uteng 2014). 
 
Table 4 shows population by age groups, the share of the population in each group who 
has a driving licence and the estimated potential increase in travel if 100 % had a driving 
licence. This indicates the maximum potential increase in travel when fully automated 
vehicles become accessible to everybody, either on an individual basis or as a form of 
shared mobility. 
 

Table 4: Potential increase in travel by universal access to fully automated vehicles. 
 

Age group Population With licence (%) Daily travel (km) Max daily travel 
(km) 

18-24 473,917 75 29.7 39.6 

25-34 683,399 90 37.0 41.1 

35-44 719,134 95 39.3 41.4 

45-54 697,683 97 51.5 53.1 

55-66 711,040 95 45.2 47.6 

67-74 343,612 93 39.1 42.0 

75-+ 355,110 83 26.2 31.6 

All 3,983,395 91 39.8 43.5 

 
If all individuals in the 18-24 age group had a driving licence, mean travel could increase 
to (100/75) ∙ 29.7 = 39.6 km. This is an absolute maximum, as it assumes that those 
who do not have a driving licence do not travel at all and thus do not contribute to the 
current mean length of 29.7 km per day. This is not realistic. It is, however, a simple 
estimate that can be developed from summary statistics making a minimum of 
assumptions. To develop more detailed estimates, one would need to have more detailed 
data and need to make more detailed assumptions, the validity of which cannot be tested 
today. The very simple approach illustrated above should be widely applicable and 
indicates an order of magnitude. Given the imprecision of many other estimates of 
impacts of CATS as these can be made today, such an estimate is judged as adequate. 
 

4.7 Use of shared mobility 
There are two types of shared mobility, both of which are expected to increase as a 
result of vehicle automation. The first type is car sharing, which is found already in many 
cities. It can be viewed as a form of car rental service in which you book a car as it is 
needed. The second type is ride sharing. Ride sharing can be viewed as an informal type 
of public transport. Several individuals share a vehicle, but the vehicle does not run 
according to a fixed route or fixed time table as current public transport does. 
 
Shared mobility has a great potential for reducing the number of vehicles needed to 
serve a given volume of travel. A number of the studies reviewed by Soteropoulos et al. 
(2019) have estimated potential impacts of shared mobility in terms of how few vehicles 
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would be needed to serve current travel volume. In all these studies, it was assumed 
that integration of automated vehicles with information technology available on 
smartphones would enable travelers to book trips with a minimum of waiting time. 
Furthermore, all studies relied on algorithms for optimising the utilisation of shared 
vehicles, i. e. routines designed to maximise both the service time of the vehicles (the 
share of each day they were moving; currently around 1 hour out of 24 for an 
individually owned car, but possibly as much as 16 out of 24 hours for a shared vehicle 
with the same service hours as, for example, scheduled buses) and their occupancy rate 
(cabin factor in airline terminology). The results of studies reviewed by Soteropoulos et 
al. (2019) are presented in Figure 13. 
 

 
Figure 13: Number of shared vehicles needed to serve current travel volume as a percentage of current vehicle 

fleet 

 
The results vary, but most studies suggest that a reduction of the vehicle fleet by 90% is 
possible. This illustrates the enormously inefficient use of individually owned cars today. 
They are driven mostly on short trips with a single occupant or perhaps a driver and a 
passenger. They remain parked for 23 out of 24 hours. The studies of shared mobility 
show that, in theory, one could reduce the number of vehicles by 85-90% and still serve 
all currently made trips. 
 
It would obviously require very efficient logistics and advanced information systems to 
accomplish the very efficient use of vehicles modelled in these studies. Another uncertain 
factor is whether people will prefer shared mobility to individual mobility. Clearly, you 
can save lots of money by not owning a car, but Grush and Niles (2018) argue that 
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individual ownership will remain widespread even when vehicles have become fully 
automated. 
 
When predicting impacts of connected and automated cars, it may ultimately not matter 
much whether these cars are assumed to be owned and operated individually as cars are 
today or as shared vehicles. Why not? The principal causal pathway of all impacts of 
connected and automated vehicles discussed so far is traffic volume. It is changes in 
traffic volume that determines net effects on safety, mobility and environmental factors. 
 
If shared mobility is as successful as some studies indicate, the number of vehicles will 
be greatly reduced, but traffic volume may not be reduced. Rather than having 100 cars 
being in traffic 1 hour per day, we may have 10 cars running in traffic 10 hours per day. 
It is the product of the number of vehicles and the distance (and time) they travel that 
generates traffic volume. Shared vehicles can only serve the current number of trips by 
being in operation a substantially greater part of each day than an average car. To serve 
peak demand by a smaller number of cars, extensive ride sharing would be needed. 
Some of the studies reviewed by Soteropoulos et al. (2019) have estimated both 
changes in the number of vehicles and changes in vehicle kilometres. In studies stating 
changes as intervals, the midpoint value was used. The results of these studies are 
summarised in Figure 14. 
 
It is seen that even in studies assuming a reduction of the vehicle fleet of around 90%, 
vehicle kilometres of travel are expected to increase by some 10-20%. In studies 
assuming a reduction of the vehicle fleet of around 80%, predicted increase in vehicle 
kilometres of travel ranges from 11 to 67%, on the average 35%. Thus, if it is assumed 
that increased road capacity and shorter travel time will induce more traffic (see the 
discussion of secondary impacts in Chapter 5), such an assumption would seem to be 
equally valid both for the case in which automated mobility remains predominantly 
individual and for the case in which shared mobility becomes widespread. 
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Figure 14: Changes in the number of vehicles and changes in vehicle kilometres 

 

4.8 Road safety 
Connected and automated vehicles are expected to improve road safety. Simulation 
studies support this expectation, but the realism of their results should be assessed by 
reference to estimates derived by means of other methods. 
 
4.8.1 Rear-end and lane-change accidents on motorways 
 
Studies made by Kockelman et al. (2016), Olia et al. (2016), Li et al. (2017), Rahman et 
al. (2018), Yang et al. (2018), Papadoulis et al. (2019) and Rahman et al. (2019) have 
used traffic simulation to estimate the effects of CATS-technology on traffic conflicts 
involving potential rear-end and lane change collisions on motorways. 
 
The predicted number of traffic conflicts at 0% market penetration was set to 100 for 
each study; the estimated number of conflicts at higher market penetration levels show 
percentage changes compare to 0% market penetration. Figure 15 shows the results. 
 
It is seen that all studies predict a reduction of the number of traffic conflicts. The 
estimates nevertheless vary considerably. A function has been fitted to the data points. 
The best fitting function was a second degree polynomial. The function passes through or 
near to the median data points at penetration rates of 10%, 25%, 50% and 100%. 
Despite the wide dispersion of data points around the fitted curve, it is an unbiased 
summary of the main tendency of the studies. Note that at 100% market penetration, 
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most of the data points are located near the bottom of the diagram, indicating a 
reduction in conflicts of 90-95%. The data points located further up in the diagram are 
outlying. 
 
The dose-response curve in Figure 15, and similar curves presented below, applies when 
all else is equal. This means that it applies to current traffic volume. If vehicle 
automation generates more traffic, one should adjust for the effect of this on the number 
of accidents by multiplying the dose-response curve by an adjustment factor accounting 
for the effect of increased traffic volume on the number of accidents. This may possibly 
result in a curve with a different shape from the one shown in Figure 15 and subsequent 
figures. 
 
 

 
Figure 15: Dose-response curve for rear end and lane change collisions as indicated by the number of traffic 

conflicts estimated in simulation 

 
4.8.2 Accidents in signalised junctions 
 
Three studies have applied traffic simulation to estimate potential safety effects of 
connected and automated vehicles in signalised junctions (Kockelman et al. 2016, 
Morando et al. 2018, Virdi et al. 2019). The results of the three studies differ 
substantially. In Figure 16, separate dose-response curves have therefore been fitted to 
the results of the three studies. 
 
It is seen that Kockelman et al. (2016) predict a large reduction of the number of 
conflicts. However, the study provides only three data points. Morando et al. (2018) 
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predict a smaller reduction of the number of conflicts. Virdi et al. (2019) predict an 
increase in the number of conflicts at low market penetration rates for connected and 
automated vehicles, but then a decline, ending close to the decline at 100% market 
penetration predicted by Morando et al. (2018). 
 
It would require a detailed examination of the assumptions made in each study to explain 
why their findings differ so much. The studies agree that at high levels of market 
penetration, connected and automated vehicles will reduce the number of conflicts in 
signalised junctions. The curve fitted to the study by Morando et al. (2018) is, for most 
penetration rates, located between the curves fitted to the studies by Virdi et al. (2019) 
and Kockelman et al. (2016). This curve can thus be regarded as a mid-point between 
the two more extreme curves. 
 

 
Figure 16: Dose-response curves for accidents in signalised junctions as indicated by the number of traffic 

conflicts estimated in simulation 

 
4.8.3 Accidents in priority or stop controlled junctions 
 
Kockelman et al. (2018) applied traffic simulation to estimate the number of conflicts in 
two junctions controlled by stop signs as a function of market penetration of automated 
vehicles. Estimates were presented for 0, 50 and 100% market penetration. The results 
for the two junctions differed somewhat. With only three data points, a second degree 
polynomial fitted the data points perfectly. Virdi et al. (2019) also applied traffic 
simulation to estimate changes in the number of conflicts as a result of increasing market 
penetration of automated vehicles. The function fitted to their results is very different 
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from the functions fitted to the results of Kockelman et al. (2018). Figure 17 compares 
the functions. 
 
When the results of different studies vary as much as in this case, at least three 
questions arise: (1) Why do the studies reach so different results? (2) Does it make 
sense to estimate average results based on the studies? (3) If estimating an average 
does not make sense, should one of the studies be preferred? 
 
To answer the first question, a detailed examination of the assumptions made in traffic 
simulation would be needed. Such an examination might not necessarily resolve the 
inconsistency, as different choices of assumptions could all be justified. 
 

 
Figure 17: Dose-response curve for accidents in priority or stop controlled junctions as indicated by the number 

of traffic conflicts estimated in simulation 

 
Virdi et al. (2019) write: “The approach used in this study in applying highly refined CAV 
operations, such as precise vehicle co-ordination, minimal headways and complete co-
operation may be optimistic. … CAV operation may not match the assumptions made in 
this study.” 
 
In other words, the assumptions made by Virdi et al. (2019) may be too optimistic. It 
has long been known that interaction between motorists in priority-controlled junctions is 
strongly influenced by informal norms (Ebbesen and Haney 1973). If traffic on the 
priority road is highly congested, moving at walking pace, cars entering from minor roads 
will often be permitted to “force” their way into the priority road, as those who are stuck 
in the queue on that road will understand that if cars without the right of way are not let 
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in, they may have to wait unacceptably long before there is a sufficient gap in traffic to 
enter the priority road. Even in less congested conditions, drivers on a priority road will 
let drivers from the minor road enter the priority road by slightly slowing down if they 
notice that there is a long line of cars waiting to enter from the minor road. It is 
challenging to make automated cars understand such informal conventions, and during 
the transition period when there is a mix of human operated and automated cars, 
misunderstandings may occur if human drivers assume that the automated cars will 
behave as a human driver would do. Uncertainty about the capabilities of technology to 
adopt informal conventions suggests that a conservative interpretation of available 
studies should be adopted. In a case of very different results, as shown in Figure 17, the 
most conservative estimates will be preferred. No attempt will be made to synthesise the 
findings of studies providing as different estimates of the impacts of connected and 
automated vehicles as shown in Figure 17. 
 
The two curves fitted to the results of Kockelman et al. have been synthesised by means 
of the following polynomial: 
 
Response = -0.001Dose2 - 0.12Dose + 100 
 
With Dose stated as percentage market penetration and the fitted value of the Response 
at 100 % market penetration being 78. 
 
4.8.4 Accidents in roundabouts 
 
Morando et al. (2018) and Virdi et al. (2019) used simulation to estimate the number of 
traffic conflicts in roundabouts as a function of the market penetration of automated 
vehicles. Their results are presented in Figure 18. 
 
The functions fitted for the two studies are very different and it makes little sense to 
estimate an average of them. The question is therefore once more which of the two 
functions is regarded as most realistic. Morando et al. (2018) specify nine parameters 
that were used in simulation These parameters were specified for human drivers and two 
versions of automated vehicles. The curve fitted in Figure 18 is based on version 1 of the 
automated vehicles, which can be regarded as somewhat more “aggressive” in their 
behaviour than version 2 of automated vehicles. 
 
Virdi et al. (2019) use the same parameter values for human drivers as Morando et al. 
(2018). Both studies base these parameters on the Wiedemann (1974) car following 
model. They do not list the parameters used for connected and automated vehicles, but 
state that the VCCP algorithm (Virdi CAV Control Protocol) was used to control the 
behaviour of connected and automated vehicles with respect to acceleration, lane 
changing and gap acceptance. It was further assumed that connected and automated 
vehicles would have access to information about all nearby vehicles, and would thus, as 
an example, only change lane when a sufficient gap was available. 
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Figure 18: Dose-response curve for accidents in roundabouts as indicated by the number of traffic conflicts 

estimated in simulation 

 
Given the assumptions made, both studies are probably “correct” in their findings, in the 
sense that these findings follow mathematically from the assumptions made. Yet, even in 
roundabouts there will be interactions between automated vehicles and non-automated 
road users, which cannot fully be described in terms of fixed parameters. Caution 
therefore once more suggests conservatism and relying on the function associated with 
the smallest safety benefits. 
 
4.8.5 Cyclist and pedestrian accidents 
 
Two studies have been found that have tried to estimate potential impacts of new vehicle 
technology on cyclist or pedestrian accidents (Combs et al. 2018; Kovaceva et al. 2019). 
Both studies used accident data as a basis for evaluating potential impacts of automation 
technology design to detect pedestrians or cyclists and apply automatic braking to avoid 
or reduce the severity of a collision. A dose-response curve fitted to the results of the 
study is shown in Figure 19. 
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Figure 19: Dose-response curve for pedestrian accidents using Radar and Lidar as indicators of new technology 

 
To fit the dose-response curve, various combinations of Radar and Lidar studied by 
Combs et al. (2018) were judgmentally converted to the market penetration scale used 
in the other dose-response curves. The potential for reducing cyclist and pedestrian 
accidents when all vehicles have detection technology and emergency braking systems 
was 57%.  
 
4.8.6 Summary of estimated potential impacts on safety 
 
The maximum potential impacts on road safety of connected and automated vehicles 
according to the dose-response curves in Figures 15-19 are: 
 
Type of accident          Potential reduction (%) 
Lane change and rearend on motorways      -94 
Accidents in signalised junctions (conservative estimate)   -52 
Accidents in priority or stop controlled junctions      -22 
Accidents in roundabouts        -61 
Cyclist and pedestrian accidents       -57 
 
Estimated maximum potential reductions are seen to vary considerably between the 
different types of accidents. The estimates currently found in the literature do not include 
all types of accidents. No estimates have been found for head-on accidents or single 
vehicle accidents. Coverage of different types of traffic environment is also incomplete. 
The simulation studies refer, broadly speaking, either to motorways or to urban traffic 
environments. No studies refer explicitly to a rural traffic environment. This is a 
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significant omission, as most vehicle kilometres in most countries are driven on rural, 
undivided two-lane roads. These roads differ from urban roads by having fewer junctions 
and fewer pedestrians and cyclists. 
 
The incompleteness of the dose-response curves, as well as the fact that some of these 
curves are based on a single study, means that one cannot base methods for predicting 
impacts of connected and automated vehicles on these dose-response curves only. To 
develop a library of dose-response curves covering the needs of stakeholders, it is 
necessary to supplement the dose-response curves presented above with additional 
curves, obtained either by additional simulation studies, by relying on other approaches 
for estimating potential impacts of connected and automated vehicles, or, as a last 
resort, by generalising the dose-response curves presented above to types of accidents 
or types of traffic environment not explicitly covered by them. 
 
The next section discusses other approaches to the estimation of the potential safety 
impacts of connected and automated vehicles. 
 
4.8.7 Combining simulation with other approaches 
 
The relevance and applicability of the following approaches for estimating potential 
impacts on safety of connected and automated vehicles will be discussed: 
 

1. Estimates based on findings of in-depth studies of accidents (The in-depth 
approach) 

2. Estimates based on epidemiological studies of the contributions of risk factors to 
accident (The epidemiologic approach) 

3. Estimates based on evaluations of specific technologies already on the market or 
close market launching (The technology extrapolation approach) 

4. Estimates based on comparative analysis of the reliability of human operators and 
automated systems (The comparative reliability approach). 

5. Estimates based on comparing the actual accident rates of automated vehicles to 
the accident rates of manual vehicles (The accident rate comparison approach) 

 
4.8.7.1 The in-depth accident investigation approach 
 
In-depth studies of accidents typically identify human error as a major contributor to 
accidents. Examples include lack of observation (e. g. caused by distractions), 
misunderstandings of situations (erroneously thinking that another road user would give 
way), and misjudgements (erroneously believing stopping distance was adequate). Some 
kind of human error is usually classified as having contributed to about 90% of the 
accidents.  Based on this estimate, it is tempting to conclude that by eliminating human 
drivers, one may eliminate all accidents to which human error contributed. For an 
example in the literature, see Fagnant and Kockelman (2015). 
 
While there is little doubt that various forms of human error make an important 
contribution to accidents, assessing potential changes in safety associated with the 
gradual elimination of these errors is impossible. Driver error will cease to be an issue 
only when all vehicles are fully automated and drivers eliminated. However, in the 
transition phase, it is by no means clear what shape an imagined gradual “error-
elimination” curve (as a function of market penetration of automated vehicles) might 
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have. Automation at a certain level, particularly SAE level 3, may induce new errors. 
Platooning of a certain percentage of vehicles, involving shorter headways than human 
drivers currently adopt, may affect the headway chosen by cars still operated manually 
(see discussion in Chapter 5). Little is known about such behavioural adaptations. 
Therefore, it is impossible to derive a dose-response curve merely on the basis of 
knowing that human error contributes to a high percentage of accidents. 
 
4.8.7.2 The epidemiologic approach 
 
Epidemiological studies aim to quantify the contribution of various risk factors to 
accidents and injuries, and the potential reduction of the number of accidents or injuries 
that can be attained by eliminating the increase in risk associated with a risk factor. The 
potential for reducing accidents or injuries is generally stated as attributable risk, which 
is defined as follows: 

Attributable risk = 
1))1((

)1(
+−

−
RRPE

RRPE  

PE is the proportion of exposure (vehicle kilometres) exposed to a certain risk factor. RR 
is the relative risk associated with a risk factor. Thus, if 30% of traffic is in darkness and 
the risk is 50% higher than in daylight, PE = 0.30 and RR = 1.50. The risk attributable to 
darkness is 0.13 (0.3 ∙ 0.5)/(1 + (0.3 ∙ 0.5)). Thus, if the risk associated with darkness 
could be eliminated, the total number of accidents could be reduced by 13%. Estimates 
of attributable risk show potential accident reductions. In practice, it is rarely possible to 
fully eliminate a risk factor. Accident reduction will in most cases be smaller than an 
estimate of attributable risk suggests.  
 
In a study of the prospects for improving road safety in Sweden, Elvik and Amundsen 
(2000) estimated attributable risk for about 20 risk factors. The results, taken from Elvik 
(2012) are reproduced in Table 5. The table shows first-order attributable risks, i.e. the 
attributable risk estimated for each risk factor without considering its correlation or 
interaction with other risk factors. It is seen that risk factors in each of the main groups 
identified all make a substantial contribution to fatalities and injuries. 
 
To give an example of the interpretation of the estimates, consider poor car 
crashworthiness. The attributable risk for fatalities is estimated at 0.341. This means that 
if all cars had the best crashworthiness performance of cars in their weight class, the 
number of fatalities could be reduced by 34%. 
 
Attributable risks sum to more than 1, in fact to 2.36 for fatalities and 1.56 for injuries. 
This does obviously not mean that one can eliminate fatalities two times over. It shows, 
basically, the same as in-depth studies, which is that more than one factor contributes to 
each accident. 
 
It is reasonable to expect fully automated and autonomous vehicles to eliminate or 
greatly reduce most of the attributable risks listed in Table 5. Age and other 
characteristics of the driver – which are major risk factors today – would no longer 
matter if the vehicle is driverless. They might continue to matter if automation was 
partial only and the driver would be asked to take control in certain situations. 
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Table 5: First order attributable risk associated with various risk factors in Sweden. Based on 
Elvik and Amundsen (2000); reproduced from Elvik (2012). 
 

 
 
Unfortunately, it is not easy to estimate the combined effects of eliminating all or most of 
the risk factors listed in Table 5. The principal problem is that many of the risk factors 
are highly correlated. Eliminating the contribution of one of a pair of highly correlated 
risk factors would then go some way towards eliminating the contribution of the other. 
Unless correlations among the risk factors are accounted for, there may be serious 
double counting of potential benefits of eliminating the risk factors. At this point, limits of 
current knowledge impose a serious restriction on the epidemiological approach. Elvik 
and Amundsen (2000) tried to account for correlations among the risk factors. Without 
going into detail, adjusting for correlations reduced the sum of attributable risk from 2.56 
to 1.96 for fatalities and from 1.56 to 1.23 for injuries. 
 
The combined effect of eliminating all attributable risks, adjusted for overlap and 
correlations between them, was estimated by using the method of common residuals. 
The basic logic of this method can be explained as follows: 
 
Suppose the risk attributable to factor A is 0.2 and the risk attributable to factor B is 0.1. 
The combined effect of eliminating the risk factors in then not 0.3 – the sum of their 
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attributable risks. If risk factor A is eliminated, it leaves a residual of 0.8 (1 – 0.2). 
Eliminating risk factor B can only act on the residual, i.e. it reduces risk by 0.1 of 0.8, or 
0.08. The combined contribution is then 0.28. 
 
By applying the method of common residuals, one ensures that the total reduction of 
fatalities and injuries resulting from the combined elimination of a set of attributable 
risks can never exceed the value of 1. It is mathematically impossible as indeed it should 
be. Elvik and Amundsen (2000) estimated that by eliminating all risk factors listed in 
Table 6, fatalities could be reduced by 89 % and injuries by 73 %. Elvik (2009) 
subsequently developed a more conservative version of the method of common 
residuals, the dominant common residuals method, which tries to account for correlations 
among risk factors. 
 
The epidemiological approach is flexible, as it can be used both to estimate potential 
effects of full automation and potential effects of partial automation, depending on the 
risk factors included in the estimation. Ideally speaking, estimates of attributable risk 
should be customised to each use case. This will almost surely not be possible for all risk 
factors listed in Table 5. Another limitation is that the shape of any gradual risk-factor 
elimination curve is unknown, i.e. estimates of the potential gain in safety by eliminating 
or reducing a certain combination of risk factors cannot easily be converted to a dose-
response curve having market penetration of automated vehicles as the independent 
variable. Risks are non-linear and interact. Thus, if exposure to a risk factor is reduced 
by 50 %, it does not follow that the risk attributable to that factor is reduced by the 
same percentage. An inventory of attributable risks therefore cannot be converted to a 
dose-response curve showing impacts of connected and automated vehicles, but it can 
serve as a benchmark for assessing the plausibility of potential impacts estimated by 
simulation.  
 
4.8.7.3 The technology extrapolation approach 
 
Vehicle automation is widely thought of as a gradual process. First, advanced driver 
support is introduced. Next, low level automation is introduced for selected driving 
functions or defined domains of operation. Then, domains of operations are extended and 
levels of automation increased. Finally, fully automated vehicles are developed that can 
operate on any road. 
 
Suppose that, as one benchmark, one has estimates of the potential safety effects of 
fully automated vehicles at the highest level of automation. This benchmark is the upper 
limit of attainable safety impacts (the endpoint of a dose-response curve). Suppose 
further, that estimates of safety impacts of non-automated driver support systems are 
available. These estimates show the maximum safety gains that can be attained without 
automation, or the lower bound of the number of accidents that automation can 
influence. 
 
Thus, if, for a given type of accident full automation (SAE level 5) has the potential to 
reduce the number of accidents by 80% and advanced driver support systems has the 
potential to reduce accidents by 40%, the progression from lower to higher levels of 
automation can be assumed to have impacts between 40% and 80% accident reduction.  
 
Advanced driver support systems can reduce the number of accidents considerably. A 
recent study by Leslie et al. (2019) reported that camera-based forward collision warning 
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and automatic emergency braking reduced rear-end accidents (as striking vehicle) by 
46%. Front pedestrian braking reduced pedestrian accidents by 13%. Lane departure 
warning combined with lane keep assistance reduced lane departure accidents by 20%. 
Blind zone alert, combined with lane change alert and rear camera mirror reduced lane 
change accidents by 37%. Various systems supporting safe backing, reduced backing 
accidents by 81%. Intelligent headlights reduced accidents involving animals at night by 
35%. The study clearly shows that accident reductions increase as more driver support 
systems are combined. 
 
Wang et al. (2020) made a similar study. They reported a meta-analysis of studies 
evaluating the safety effects of autonomous cruise control, automatic emergency 
braking, blind spot warning, electronic stability control, forward collision warning, lane 
change warning, lane departure warning, pedestrian collision mitigation and intersection 
movement assistant. Except for autonomous cruise control and automatic emergency 
braking, these are all advanced driver support systems that do not remove the driver 
from the driving task, but supports it by providing information or issuing warnings. The 
combined effect of all systems was estimated for six countries, using official collision 
statistics. Combined effects varied between 41% and 54% accident reduction, with a 
simple average of 47%. This shows that driver support systems currently on the market 
can reduce the number of accidents almost by half even before the transition to full 
automation starts. 
 
However, it is unknown if these advanced driver support systems reduce the potential 
additional effects of vehicle automation. Clearly, for some driver support systems, it is 
reasonable to assume that they reduce the effects of automation. Thus, if mandatory 
intelligent speed adaptation (ISA) and alcolhol ignition interlock were to be installed in all 
driver operated vehicles, automation would no longer bring the benefit of reducing 
accidents attributable to speeding or drinking and driving. Thus, it is important to be 
clear about which driver support systems are assumed to be implemented in the baseline 
situation, before automation starts. 
 
All the systems evaluated by Leslie et al. (2019) are already implemented and will most 
likely reach full market penetration before automation starts. ISA and alcohol ignition 
interlocks, on the other hand, may not be widely implemented before automation starts 
to spread. In a Norwegian Delphi survey (Høye, Hesjevoll and Vaa 2015), respondents 
expected 60% of new cars in 2030 to have automatic lane keeping (i. e. this specific 
function would be automated, but the car would still be operated by a driver), but only 
12% of new cars in 2030 to have alcohol ignition interlock and 6% of new cars to have 
ISA. 
 
It is likely that continued introduction and improvement of advanced driver support 
system will reduce the potential safety effects of vehicle automation, meaning that any 
safety benefits of automation would start to develop from a lower baseline number of 
accidents than the current number. 
 
4.8.7.4 The comparative reliability approach 
 
Humans are very reliable as operators of motor vehicles; thousands of kilometres are 
driven between each accident. To improve safety, automation technology must operate 
at a higher level of reliability than human drivers. Potential safety impacts of automation 
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technology may be assessed by comparing its reliability to the reliability of human 
drivers. 
 
To take a very simple example: Most of the time, drivers are able to adapt their speed to 
the vehicle in front of them. Most cases of braking do not end in a rear-end collision. 
While the exact “success rate” in avoiding rear-end collisions is unknown, let us assume 
it is 999,999 out of 1,000,000. This rate of reliability is the minimum a technical 
replacement of a human must attain in order to improve safety. It such a level of 
reliability possible? 
 
Probably the most detailed and representative data that can shed light on human 
reliability are data from naturalistic driving studies. Dingus et al. (2016) provide data 
based on the SHRP 2 naturalistic driving study. As of April 2015 (which was probably 
when the paper was written) these data represented more than 56 million kilometres of 
driving, during which more than 1,500 accidents had happened. (This number is 
mentioned in the text, but the detailed study reported was based on 905 accidents; it is 
not entirely clear whether these 905 accidents refer to the same time period as the 56 
million kilometres driven; below, that will be assumed). Since all events are continuously 
monitored, it is reasonable to assume that accident data are complete. Mean accident 
rate was 26.8 per million kilometres driven, corresponding to a reliability level per 
kilometre driven of 0.9999732 (i.e. the probability that a randomly selected kilometre 
was accident free). 
 
Human reliability varies considerably. The figure given above is the average for all 
drivers who took part in the SHRP 2 study. The reliability of automation technology is 
currently not known. Hence, quantifying it and comparing it to human reliability is not 
feasible and no dose-response curve can be derived from such a comparison. 
 
4.8.7.5 The accident rate comparison approach 
 
Noy, Shinar and Horrey (2018) mention studies that have found automated cars to have 
higher accident rates (accidents per million kilometres driven) than manually driven cars. 
These studies are based on very few accidents and must therefore be regarded as 
inconclusive. A considerable amount of data is needed in order to reliably estimate any 
difference in safety between manual and automated cars (Kalra and Paddock 2016). 
 
The state of California requires all incidents involving automated cars to be reported. This 
is a requirement in the law permitting automated cars to operate on public roads, mixing 
with non-automated road users. Based on these data, Favaro et al. (2017) have 
estimated the risk of accident involvement for automated vehicles. Data collected from 
September 2014 to March 2017 include 26 accidents and 1 088 453 miles travelled 
(1 751 321 kilometres). Favaro et al. estimate an accident rate of 23.89 per million 
vehicles miles of travel. They indicate that the mean accident rate for driver operated 
vehicles in the United States is 2.0 per million vehicle miles of travel, suggesting that the 
accident rate for automated vehicles is more than ten times higher than the accident rate 
for manual vehicles. 
 
This comparison is meaningless. The only fair basis for a comparison is data from 
naturalistic driving studies. It is only data from naturalistic driving studies that can 
reasonably be assumed to have equally complete coverage of accidents as data for 
automated vehicles. Based on the SHRP 2 naturalistic driving study, the mean accident 
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rate for manual vehicles can be estimated as 16.07 accidents per million vehicle 
kilometres. The corresponding rate for automated vehicles is 14.85 accidents per million 
vehicle kilometres, or 7.6 % lower than driver operated vehicles. Automated vehicles are 
already a little safer than driver operated vehicles. 
 
This simple comparison overlooks the fact that risk varies, both for driver operated and 
automated vehicles, depending, among other things, on the distance driven per year. 
Table 3 in the paper by Favaro et al. (2017) allows four groups of automated vehicles to 
be formed, differing in terms of annual distance driven. Corresponding data for driver 
operated cars can be taken from a paper by Antin et al. (2017), which, unfortunately, 
only includes drivers above 65 years. These drivers had a mean accident rate of 14.74 
accidents per million vehicle kilometres; slightly lower than the overall risk for drivers 
participating in the SHRP 2 naturalistic driving study. Figure 20 shows how accident rate 
depends on annual distance driven for driver operated and automated cars based on the 
studies of Favaro et al. and Antin et al. 
 

 
Figure 20: Variation of accident rate by driving distance for driver operated and automated cars. Derived from 

Favaro et al. (2017) and Antin et al. (2017). 

 
The curves are almost on top of each other. Given the fact that the mean accident rate 
estimated for the SHRP 2 drivers was 16.07, not 14.74 accidents per million vehicle 
kilometres, it is likely that the risk curve for automated vehicles would be below that for 
human drivers if all SHRP 2 drivers had been included, not just those aged 65 and above. 
 
An updated comparison can be made on the basis of data provided by Boggs et al. 
(2020). They list mileage data and crash data for 36 companies operating automated 
vehicles on public roads in California. Mean crash rate was 21 per million vehicle 
kilometres, but crash rate varied considerably between the companies. Most of them had 
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zero crashes. To err on the side of caution, crash rate has only been estimated for 
companies that had at least 1 crash; the long-term crash rate of the other companies is 
obviously not zero. Figure 21 shows a comparison between automated cars and human 
drivers under these assumptions. 
 

 
Figure 21: Comparison of crash rates for automated cars and human drivers. Derived from Boggs et al. 2020 

 
The horizontal axis shows the percentage of kilometres driven by automated cars for 
three groups of cars. One group had a high crash rate of about 67 per million kilometres 
and represented 18.6% of the total number of kilometres driven. This group is shown by 
the rectangle to the left. A small group had an average crash rate of 27 per million 
kilometres and represented 5.2% of the total number ogf kilometres driven. Finally, the 
Waymo cars of Google had a crash rate of 10.7 per million kilometres and contributed to 
76.2% of the total number of kilometres driven. Thus, most of the driving performed by 
automated cars had a lower crash rate than both a human driver (16.1) and the mean 
for all companies operating automated cars (21.0). 
 
Sparrow and Howard (2017) argue that once it has been established that automated cars 
are safer than driver operated cars, (human) driving should be banned. Remarkably, we 
may already be at that point, although automated vehicles must still be regarded as an 
immature and experimental technology. In a similar vein, Kalra and Groves (2017) speak 
about “The enemy of good”, by which they refer to the costs to society of waiting for 
automated vehicles to become perfect, rather than switching quickly to them once they 
are only a little safer than human drivers. 
 
4.8.7.6 Conclusions about other approaches 
 
As noted above, it is at this time only possible to develop a few dose-response curves 
showing potential safety impacts of connected and automated vehicles based on 
simulation. These dose-response functions do not include all types of accident and do not 
apply to all types of traffic environment. They do therefore not provide a complete basis 
for predicting the potential impacts on safety of connected and automated vehicles. 
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In this section, the question was asked whether the dose-response curves based on 
simulation can be supplemented by dose-response curves estimated by means of other 
approaches. Unfortunately, the answer is negative. One may at best get a rough 
estimate of the maximum potential safety effects of automation technology if the 
technology succeeds in eliminating all known risk factors contributing to accidents. Such 
an estimate may function as a benchmark, but does not provide a basis for developing 
dose-response curves. A benchmark indicates the endpoint of a dose-response curve, i.e. 
the number of accidents remaining when the highest level of automation has reached full 
market penetration. However, between the starting point and the end point, a dose-
response curve can have many shapes, as shown below: 
 
Starting point 
 
 
 
 
 
           End point 
 
It is important to know the shape of the dose-response curve in order to estimate 
impacts at all levels of market penetration of automation technology from 0 to 100 %. If 
only the starting point and the end point are known, the total impacts on safety cannot 
be estimated.  Thus, a curve initially falling steeply and then flattening close to its lowest 
level will, during the time it takes to traverse the function from start to end, save more 
lives than a curve which initially increases and starts to fall sharply only when it gets 
close to full market penetration. The area under the curve falling fast at first will be 
smaller than the area under the curve first rising and then falling sharply. 
 
Knowing the shape of the dose-response curve has great policy relevance. If the curve is 
shaped like the rightmost curve above, it may be wise to first introduce a technology 
with a dose-response curve like the second curve from the left above. This curve falls 
sharply even at low levels of market penetration, and once it has reached a low level, the 
technology associated with the rightmost curve above can be introduced, because the 
initial rise of this curve will start from a lower initial number of accidents than it would if 
the technology giving quick gains in safety had not been introduced before. 
 
The dose-response curves emerging from the simulation studies quoted above had 
different shapes. It therefore seems clear that the shape of the dose-response curves can 
be different for different types of accident, different automation technologies and 
different traffic environments. Is it possible at all to say anything about the expected 
shape of the dose-response curves for those types of accident etc. not included in the 
curves presented above? 
 
4.8.8 Event-based exposure as potential conflicts – implications for dose-

response curves 
 
In a series of papers, Elvik et al. (Elvik, Erke and Christensen 2009, Elvik 2010, 2015) 
have explored some implications of defining traffic exposure as events. Examples of 
events include: encounters (cars passing each other in opposite directions), simultaneous 
arrivals at junctions, braking, lane changing. Common to all events is that the event is a 
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potential conflict. The event has two outcomes: no conflict or conflict. A conflict in turn 
has two outcomes: accident or no accident. 
 
These studies are relevant for assessing the shape of dose-respose curves, as closed-
form solutions relating the number of events to the number of conflicts exist for many 
types of events. To give an example: each encounter is an opportunity for a conflict or 
head-on collision. The number of encounters is: 
 

Number of encounters = 
2Number of vehicles in both directions per unit of time

2
 
 
 

 

 
If the assumption is made that automation technology can prevent all head-on collisions, 
this is analogous to reducing traffic volume from a given initial level to zero. The dose-
response curve from market penetration from 0 to 100%, and an initial level of 100 
accidents will then be: 
 
Dose-response curve (encounters) = 0.01x2 – 2x + 100 
 
This curve has an initial value of 100 and a final value of 0. It falls sharply at the 
beginning and becomes flatter closer to 100% market penetration. Should the technology 
be less than 100% effective, for example expected to prevent only 80% of head-on 
collisions at 100% market penetration, the curve can be shifted so that its initial value is 
100 and its final value is 20 rather than 0, while preserving the shape of curve. This 
theoretically derived dose-response curve can be used for head-on collisions. 
 
Closed-form expressions were also derived for the probability of conflict in three-leg and 
four-leg junctions as a function of the number of simultaneous arrival from potentially 
conflicting directions. A simultaneous arrival was defined as within the same 1 second. If 
two vehicles arrive within the same 1 second, there is clearly a small safety margin and a 
high probability of conflict. If it is again assumed that automation technology is 100% 
effective, i.e. it has vehicle-to-vehicle communication systems that can reliably detect 
other arriving vehicles and take appropriate action to prevent a conflict, then the dose-
response curve can again be modelled as a reduction of the number of simultaneously 
arriving vehicles from a given initial number to zero. The following dose-response curve 
perfectly fits (for hourly entering volumes between 50 and 2000, all approaches 
combined): 
 
Dose-response curve (conflicts in junctions) = 0.00003x3 + 0.004x2 – 1.6928x + 100 
 
Within the range between 0 and 100, this polynomial produces meaningful values. It is 
suggested to use it for conflicts in junctions not covered by the simulation studies, e.g. 
conflicts between cars and cyclists. Again, should the technology not eliminate conflicts, 
but reduce them by 80%, the curve can be shifted to a final value of 20 (rather than 0), 
while preserving its shape. 
 
Closed-form curves also exist for lane changes and braking in a row of cars following 
each other in the same direction. One type of accident that cannot easily be linked to a 
specific event is running off the road. No dose-response curve has been found for 
automation technology intended to help prevent running off the road. Vehicle technology 
intended to serve such a function may possibly need to be supported by electronically 
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readable road markings that help keep the car within its lane. The dose-response curve 
will then be a diffusion curve, in which accident reduction will be proportional to the 
share of vehicle kilometres driven by automated cars having the technology. 
 

4.9 Fuel consumption and emissions 
The principal source of uncertainty when trying to estimate the impacts of vehicle 
automation on fuel consumption and emissions is whether connected and automated 
vehicles will continue to use fossil fuels or become electric. Energy efficiency is expected 
to continue to improve even if vehicles are powered by combustion engines. This means 
that, for a given traffic volume, less energy will be consumed and less emissions 
produced. If electric vehicles take over, they will still use energy for movement, but this 
will not be associated with emissions. How much “cleaner” electricity is than fossil fuels, 
depends on how it is produced. Within the Levitate project, we have chosen not to go 
into how electricity is produced. The main difference between fossil fueled vehicles and 
electric vehicles is that the latter are zero emission. 
 
Studies by Wadud et al. (2016) Olia et al. (2016), Vasebi et al. (2018) and Chen et al. 
(2019) allow a dose-response function to be developed for fuel consumption. These 
studies all assume that automated vehicles will continue to have internal combustion 
engines. A curve fitted to the data points provided by these studies is shown in 
Figure 22. 
 

 
Figure 22: Change in fuel consumption associated with vehicle automation 

 
While the studies produce estimates that are close to each other up to 50% market 
penetration for automated vehicles, there is less consistency at higher levels of market 
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penetration. Only one study included penetration levels of 70, 80 or 90 percent. Two 
studies provided estimates for 100 percent market penetration, but these estimates were 
far apart. 
 
Slowik and Sharpe (2018) summarise studies of the effects of truck platooning in fuel 
consumption. In studies reporting changes as an interval, the midpoint of the interval is 
used. In ten studies, the mean saving in fuel consumption was 11.8%, with a range from 
2.8% to 22%. Presumably, all estimates refer to savings in the types of fuel (mainly 
diesel) currently used by trucks. Estimates are interpreted as showing maximum effects, 
i.e. savings if all trucks are in a platoon (100% penetration of platooning). 
 

4.10 Vehicle ownership costs 
Car ownership costs include the costs of buying and keeping a car and the costs of 
operating it. Studies have been made to determine whether vehicle automation will 
change these costs. The studies do not easily lend themselves to a dose-response curve, 
but will be referred to in chronological order. 
 
Fagnant and Kockelman (2015) estimate that an automated vehicle initially will cost 
10,000 US dollars more than a conventional vehicle, but that the additional cost will fall 
to 5,000 US dollars at 50 % market penetration and to 3,000 US dollars when automated 
vehicles reach 90 % market penetration. 
 
Anderson et al. (2016) estimate that an average US household could save about 6000 US 
dollars per year by not owning a car and joining a car-sharing program. 
 
Bansal and Kockelman (2017) estimate the cost of level 3 automation to 15,000 US 
dollars in 2015, dropping to 11,607 dollars in 2020 and 3,220 dollars in 2045. The cost of 
level 4 automation was estimated as 40,000 US dollars in 2015, reducing to 30,951 
dollars in 2020 and 8,586 dollars in 2045. 
 
Wadud (2017) reported a cost of ownership analysis for automated vehicles. He 
estimated current costs of owning and operating cars by income quintiles (shares of one 
fifth) in Great Britain. He estimated that buying an automated vehicle in 2020 would cost 
16,600 US dollars more than a conventional vehicle, but that cost would fall by 5 % per 
year. Total costs of ownership were estimated to increase by 29.6% in the lowest income 
quintile, falling to 16.3%, 7.9% and 2.9% in the next income quintiles. Only the upper 
fifth income quintile (the top 20% income earners) would save costs. For this group, a 
reduction of car ownership costs of 6.4% was estimated. For commercial vehicles, cost 
savings ranging from 15 to 30% were estimated. Thus, automated vehicles can save 
costs in commercial transport and for the richest private car owners. For 80% of the 
population, automated vehicles would be more expensive than current vehicles, even 
allowing for savings attributable to lower fuel consumption and more productive use of 
travel time. It should be noted that no savings in insurance costs was assumed. Wadud 
argued that although automated vehicles will have a lower accident rate than 
conventional vehicles, they will be more expensive to repair or replace, resulting in an 
unchanged insurance premium. 
 
Bösch et al. (2018) compared the costs of owning and operating conventional cars to 
automated cars. For private cars, the cost per kilometre of an automated car were found 
to be 4 % higher than the cost of a conventional car. The main contributor to the 
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increased cost was depreciation, which was higher because the automated car was 
assumed to be more expensive than the conventional car. Insurance costs were assumed 
to decline by 50%. The per kilometre cost of a taxi was estimated to be 85% lower for an 
automated taxi than for a taxi with a driver. 
 
Shabanpour et al. (2018), in a stated preference study, assumed a purchasing price for 
an automated vehicle of either 40,000, 50,000 or 60,000 US dollars. 
 
Slowik and Sharpe (2018) estimated the additional cost of level 5 automation technology 
for a truck to be 23,400 US dollars. The technology included sensors, communication 
systems and processing software. 
 
Tirachini and Antoniou (2020) give cost estimates for fully automated vehicles of 29,490 
Euro for a car, 43,433 Euro for a van, 281,234 Euro for a minibus, 419,429 Euro for a 
standard bus, and 627,696 Euro for an articulated bus. Presumably, all these estimates 
refer to the extra costs of an automated vehicle compared to an otherwise identical non-
automated vehicle. 
 
There is no consensus about what the additional cost of an automated vehicle will be, 
with estimates ranging from a low of 10,000 US dollars to a high of 40,000 US dollars. As 
will be seen in the next section, trying to determine the cost more precisely is important 
to support the interpretation of studies of willingness-to-pay for automated vehicles. If 
the highest cost estimate is assumed, almost nobody is willing to pay that much for 
automated vehicles. If, on the other hand, the lowest cost estimate is assumed, there 
will at least be some who are willing to pay the additional cost of an automated vehicle. 
 

4.11 Willingness to pay for automation technology 
 
4.11.1 Existence of willingness to pay 
 
Most studies of the willingness to pay for vehicle automation proceed in two stages. The 
first stage is to ask a sample of individuals whether they are willing to pay anything at 
all. If the answer is “yes”, respondents proceed to the second stage in which they are 
asked how much they are willing to pay. We will first present the results of the first stage 
of studies of willingness to pay, then the results of studies of the second stage. 
 
Table 6 shows the findings of studies of whether a positive willingness to pay for 
automated vehicles exists or not. The results of the studies vary a lot, but some studies 
find that a majority are not willing to pay anything for automation technology. In China, 
a clear majority of respondents indicate a positive willingness-to-pay for automation 
technology. In Australia and Japan, the opposite is the case. Results for the USA vary 
and are not always clearly presented, leaving readers to guess what the authors 
intended. 
 
No attempt has been made to formally synthesise the results presented in Table 6. 
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Table 6: Existence of willingness to pay for vehicle automation in surveys. 
 

Study Country (N) Not willing to pay 
(%) 

Willing to pay (%) 

Payre, Cestac, Delhomme 2014 France (421) 22 78 

Schoettler, Sivak 2014 China (610) 22 78 

 India (527) 30 70 

 Japan (585) 68 32 

 USA (501) 55 45 

 Great Britain (527) 60 40 

 Australia (505) 55 45 

Kyriakidis et al. 2015 109 countries (4886) 22 78 

Bansal et al. 2016 USA (347) SAE 4 19 81 

Bansal, Kockelman 2017 USA (2167) SAE 3 55 45 

 USA (2167) SAE 4 59 41 

Bansal, Kockelman 2018 USA (1088) SAE 4 29 71 

Cunningham et al. 2019 Australia (6133) 57 43 

Liu, Yang, Xu 2019 China (441) 31 69 

Liu et al. 2019 China (1355) 26 74 

Shin, Tada, Managi 2019 Japan (188089) 53 47 

 
4.11.2 Size of willingness to pay 
 
The amounts people are willing to pay for automation technology, if positive, vary 
considerably. This is not unusual. Studies of willingness-to-pay are almost always 
hypothetical (i.e. no actual payments are made) and the results are heavily influenced by 
study design; indeed, so much so that one may doubt whether the results really reflect 
any objective reality. By objective reality in this context is meant that actual payments 
would equal stated payments in the surveys. 
 
Be this as it may. Discussing methodological problems of willingness-to-pay studies can 
easily become a lengthy exercise. For the moment, only the results of the studies will be 
presented without going into detail regarding the methods employed in each study. 
Table 7 shows summary estimates of willingness to pay reported by various studies. The 
summary estimates are either mean values or median values. Not all studies report the 
information needed to estimate both mean and median values. 
 
Estimates of mean willingness to pay for a fully automated vehicle are between US 
dollars 1740 and 7589. This range is quite small, but even the highest estimate is lower 
than the lowest estimate of the cost of an automated vehicle, 10,000 dollars (see 
above). 
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Table 7: Estimates of willingness to pay for automation technology. 
 

Study Technology Respondents Mean WTP Median WTP 

Payre et al. 2014 Fully automated With WTP > 0 EURO 1624  

Schoettle, Sivak 2014 SAE 4 All, China  USD 1600 

 SAE 4 All, India  USD 160 

 SAE 4 All, Japan  USD 0 

 SAE 4 All, USA  USD 0 

 SAE 4 All, Great Britain  USD 0 

 SAE 4 All, Australia  USD 0 

Kyriakidis et al. 2015 Fully automated All, 109 countries  USD 3800 

Bansal et al. 2016 SAE 3 Not clear USD 3300  

 SAE 4 Not clear USD 7253  

Bansal, Kockelman 2017 SAE 3 All, USA USD 2438 USD 0 

 SAE 4 All, USA USD 5857 USD 0 

Daziano et al. 2017 Partial automation All, USA USD 3538  

 Full automation All, USA USD 4917  

Bansal, Kockelman 2018 SAE 2 Not clear USD 2910  

 SAE 3 Not clear USD 4607  

 SAE 4 Not clear USD 7589  

Liu, Yang, Xu 2019 Fully automated All, China USD 2782 USD 563 

Liu et al. 2019 Fully automated All, China USD 3520 USD 752 

Shin et al. 2019 Fully automated All, Japan USD 1740  

 
There is a systematic pattern in the results, in that mean willingness to pay increases 
with level of automation. In studies allowing both mean and median willingness to pay to 
be estimated, median willingness to pay is considerably lower than mean willingness to 
pay. This is a common finding in valuation studies. 
 
4.11.3 Demand curves for vehicle automation 
 
A few studies provide enough detail to allow a demand function to be estimated. One of 
these studies is Liu, Yang and Xu (2019). shows the demand curve derived from their 
study. The curve is very skewed, meaning that it has a long almost flat part and a part 
where it rises very steeply. A curve with this shape arises when a small minority is willing 
to pay very much for a good, whereas the large majority is not willing to pay very much. 
This suggests that the introduction of automated vehicles may be associated with an 
increase in inequality in transport. 
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Figure 23: Demand curve for automated vehicles derived from Liu, Ynag and Xu 2019 

 

4.12 Other societal impacts 
 
4.12.1 Needs for parking space 
 
Some of the studies reviewed by Soteropoulos et al. (2019) have estimated changes in 
the need for parking space. It should be noted that all these studies refer to shared 
mobility, i.e. they refer to a situation in which individual car ownership has to a very high 
degree been replaced by use of shared mobility. 
 
Estimates vary from -80 % to -94 %, with a mean of -89 %. These estimates refer to a 
situation when shared mobility has completely replaced individual mobility, i.e. they 
represent the endpoint of a dose-response curve. 
 
4.12.2 Inequality in transport 
 
Inequality in transport denotes differences in access to transport resources (driving 
licence, car, other means of transport) and in the consumption of transport services 
between groups with different social status. There are many indicators of social status, 
but income is frequently used. 
 
There are few studies of the potential impacts of automated vehicles on inequality in 
transport. A study by Cohn et al. (2019) relied on data for census tracts. It made the 
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assumption that: “With ubiquitous implementation of automated vehicles, it is assumed 
all households would have access to a vehicle.” This is not very realistic in view of 
current estimates of the cost of automated vehicles. It is perfectly obvious that not all 
households could afford an automated vehicle. The only way all households could have 
access to one, was if they were given away freely. Besides, if you base the analysis on an 
assumption that everybody has access to the same transport resources, the results are a 
foregone conclusion: You will of course find that inequality has been reduced. 
 
Towards the end of the paper, Cohn et al. admit that: “These assumptions are generous 
and aspirational and may not reflect initial pricing or accessibility of automated vehicles 
to low-income communities.” The analysis of Wadud (2017) is more realistic and shows 
what is, at least initially, likely to be a fact, namely that only the richest households can 
afford automated vehicles and benefit from them. 
 

4.13 Summary of impacts that can be quantified 
 
Table 8 lists potential impacts of connected and automated vehicles and indicates for 
which of these impacts it is judged feasible to develop a dose-response curve showing 
impacts as a function of the market penetration of automated vehicles. 
 
It is seen that quantification of potential impacts by means of dose-response curves is 
possible only for a minority of the impacts listed in Table 8. For some impacts the 
maximum potential impacts can be estimated. For impacts in this category, it may be 
possible to develop dose-response curves by assuming that impacts follow the diffusion 
curve of automated vehicles into the market. The diffusion of new technology typically 
follows an S-shaped curve. 
 
For some impacts, the likely direction of an impact can be indicated; yet developing a 
dose-response curve is fraught with large uncertainty. It is, for example, not clear 
whether automated vehicles will run on fossil fuel, be electric or be a mixture of electric 
and fossil fueled vehicles. What does seem likely in any case, is that fuel efficiency will 
improve. For some impacts, a dose-response curve based on technology diffusion 
appears reasonable. A case in point is effects on employment. 
 
Finally, for some impacts no meaningful quantified estimate can be developed at the 
current state of knowledge. Some of these impacts may differ in the short and long term. 
Inequality in transport, for example, may initially increase as only the wealthy can afford 
automated vehicles. However, as prices come down, more and more people can afford 
automated vehicles, and, ultimately, the universal use of such vehicles can make travel 
more accessible for those who are currently limited in their travel opportunities. Thus, in 
the short run inequality may increase, in the long run it may decrease. Based on current 
knowledge, however, any quantification of impacts will be highly speculative. 
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4.13.1 Possibility of quantifying impacts 
 

Table 8: The feasibility of quantifying potential impacts of connected and automated vehicles. 
 

Impact Possibility of quantifying impact 

Direct impacts  

Travel time Yes, by means of dose-response functions 

Travel comfort Not possible at the current state-of-knowledge 

Valuation of time Yes, as a percentage change in value  

Vehicle operating cost  Yes, as a change in mean cost per kilometre driven 

Vehicle ownership cost Yes, as additional cost of buying an automated vehicle 

Access to travel Yes, as potential increase in travel if access is universal 

Route choice (individual) Not possible at the current state-of-knowledge 

Systemic impacts  

Amount of travel Yes, by means of dose-response curves 

Road capacity Yes, by means of dose-response curves 

Congestion Yes, by means of dose-response curves 

Infrastructure wear Yes, by means of a loading model 

Infrastructure design Not possible at the current state-of-knowledge 

Modal split of travel Not possible at the current state-of-knowledge 

Optimisation of route choice Not possible at the current state-of-knowledge 

Vehicle ownership rate Not possible at the current state-of-knowledge 

Shared mobility Maximum sharing can be estimated, not how to get there 

Vehicle utilisation rate Maximum utilisation can be estimated; pathway not known 

Parking space Maximum potential reduction can be estimated 
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Table 8: The feasibility of quantifying potential impacts of connected and automated vehicles. 
 

Impact Possibility of quantifying impact 

Wider impacts  

Trust in technology Not possible at the current state-of-knowledge 

Road safety Yes, several dose-response curves 

Propulsion energy It is not clear what source of energy will be used 

Energy efficiency Direction of impact can be indicated; possible dose-response 

Vehicle emissions Yes, if assumed proportional to fuel consumption 

Air pollution Direction of impact can be indicated 

Noise pollution No studies have been found 

Public health Not possible at the current state-of-knowledge 

Employment Direction of impact can be indicated 

Geographic accessibility Too few studies for dose-response curve; local variations 

Inequality in transport Not possible at the current state-of-knowledge 

Commuting distances Direction of impact can be indicated 

Land use Direction of impact can be indicated 

Public finances Not possible at the current state of knowledge 

 
 
The next section discusses currently available dose-response curves and possible 
additions to these curves in greater detail. 
 
4.13.2 Available dose-response curves  
 
The dose-response curves that have been presented above are listed in Table 9 in their 
order of presentation. The possibility of adding dose-response curves is discussed. 
 
The dose-response curves for impacts on accidents are all plausible. When applying the 
functions, a distinction should be made between three types of traffic environments: 
 

1. Urban environments 
2. Rural environments 
3. Motorways 

 
The dose-response curves for accidents in junctions will apply mostly to an urban traffic 
environment. Head-on collisions and running off the road are more common on rural 
roads. Rearend and lane change collisions are common on motorways, but running off 
the road is also an accident type that may occur on motorways. It will be assumed that 
there are no accidents involving cyclists or pedestrians on motorways (strictly speaking, 
this is not correct; there are some very few freakish pedestrian accidents involving 
people who have left their car and started walking along the motorway or trying to cross 
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it; it is assumed that it will require an effort to identify such accidents in official statistics; 
hence they will be ignored). 
 

Table 9: Dose-response curves for potential impacts of connected and automated vehicles. 
 

Impact Dose-response curve 

Mobility impacts  

Road capacity Second degree polynomial 

Junction capacity Second degree polynomial 

Congestion delay Second degree polynomial 

Delays in roundabouts Second degree polynomial 

Delays in signalised junctions Second degree polynomial 

Changes in travel time Exponential 

Amount of induced travel Second degree polynomial 

Reduction of car fleet with shared 
mobility 

Endpoint of dose-response curve only 

Safety impacts  

Rearend and lane accidents on motorways Second degree polynomial 

Accidents in signalised junctions Exponential 

Accidents in priority junctions Second degree polynomial 

Accidents in roundabouts Second degree polynomial 

Cyclist and pedestrian accidents Second degree polynomial 

Head on collisions Second degree polynomial 

Accidents in junctions (in general) Third degree polynomial 

Single vehicle accidents; running off the 
road 

Can be derived from diffusion curve (discussion in text) 

Environmental impacts  

Fuel consumption Second degree polynomial 

 
 
The dose-response curves for impacts on mobility are also all quite plausible. The only 
impact of those listed in Table 9 for which a dose-response curve could not be derived is 
the reduction of the car fleet as a result of a complete transition to shared mobility. Such 
a transition must be regarded as improbable; it is altogether more reasonable to expect 
individual car ownership to continue on a wide scale. Be that as it may; as discussed 
above it is not necessary to make specific assumptions about whether mobility will be 
individual or shared, as most studies of shared mobility predict that vehicle kilometres of 
travel will increase, in line with the predictions that can be made based on knowledge of 
the travel demand induced by increased road capacity. 
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The dose-response curve for fuel consumption is highly uncertain. It is based on just 
three studies that provided a few data points. Another source of uncertainty is whether 
automation will be associated with a transition to electric vehicles. 
 
4.13.3 Diffusion curves for new technologies 
 
Can a dose-response curve be developed by assuming that it has the same shape as a 
diffusion curve for a new technology? Figure 24, taken from an ITF-report (ITF 2017) 
shows diffusion curves for a number of new technologies. 
 
The diffusion curve for cars (auto in Figure 24) is the ragged green line starting between 
1900 and 1915, going up and down between 1930 and 1945 and then increasing, but 
becoming flat at a level of about 90 %. Clearly, this diffusion curve is unlikely to describe 
how connected and automated vehicles will spread through the market. The diffusion of 
connected and automated vehicles is more likely to resemble the diffusion curves for 
colour TV, computers or the Internet. 
 

 
Figure 24: Diffusion curves for new technologies. Source: ITF 2017 

 
The diffusion curves in Figure 24 are, however, all misleading in the sense that they only 
show the percentage of households or individuals who own an item, e.g. the percentage 
who own a colour TV, own a computer or have an Internet link. The curves do not show 
how much the products are used. It is reasonable to assume that, for example, you will 
watch a colour TV more when it is new than when it gets older. Likewise, a new 
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computer will be used more than an old one. The same goes for cars: new cars are 
driven longer distances per year than old cars. Figure 25 shows mean annual distance 
driven by cars in Norway as a function of car age (smoothed curve). 
 

 
Figure 25: Mean annual distance driven as a function of car age 

 
It is reasonable to think that initially, only a small share of new cars will be automated, 
say 10% of car sales the first year. If these cars are driven equally long as manual cars, 
they will represent 10% of the total distance driven by cars that are up to 1 years old. 
Next year, automated cars may represent 20 % of the sales of new cars, and, again 
assuming equal driving distance, 20% of the total distance driven by cars that are up to 
1 years old. In addition, automated cars that are between 1 and 2 years old will drive 
10% of the total distance of cars of this age. As automated cars increase their share of 
the sakes of new cars, the process will generate an S-shaped diffusion curve. 
 



 

LEVITATE | Deliverable D3.2 | WP3 | Final 68 

5 Estimating and quantifying 
secondary impacts 

 

The objective of this chapter is to identify and discuss potential secondary 
impacts of connected and automated transport systems (CATS). A secondary 
impact is a rebound or feedback impact, or behavioural adaptation, which goes 
in the opposite direction of the primary impacts of CATS. As an example, if 
connectivity and platooning increases road capacity, there will be an adaptation 
to this in terms of induced travel demand. There has been less research on the 
secondary impacts of CATS than on the primary impacts. Therefore, although 
many secondary impacts can be identified and are likely to occur, estimating 
and quantifying them is more difficult than estimating and quantifying primary 
impacts. 

 
The following potential forms of behavioural adaptation to CATS are discussed in this 
chapter: 
 

1. Induced travel demand as an adaptation to increased road capacity, less 
congestion and possibly lower value of travel time, 

2. Voluntary or involuntary reduction of cognitive effort made by drivers of 
conditionally automated vehicles; adaptation to time allowed for taking over 
control of vehicles, 

3. Contagion of reduced safety margins of automated driving, in particular shorter 
time headways, to manual driving, increasing the risk of accidents, 

4. Incomplete formalisation of interactions between automated and non-automated 
road users resulting in misunderstandings and gambling on safety margins, 

5. Increased load on bridges, and potentially overload, as a result of platoons of 
heavy vehicles, 

6. Cyber risks, i.e. the potential for hackers to attack CATS and block traffic or 
provoke accidents. 

 
The only one of these impacts that can be quantified is induced travel demand. For the 
other secondary impacts, too little is known about their potential magnitude to try to 
quantify them. 
 

5.1 Travel demand 
The relationship between increase in road capacity and increase in traffic volume is a 
topic of long controversy. Today, however, there is wide (if perhaps not universal) 
agreement that a positive relationship exists. What continues to be discussed is whether 
so much new traffic is induced that it completely fills up the additional road capacity. 
Different studies have come to different results at this point. 
 
It would detract from the main objective of this deliverable to delve into an extensive 
review of studies of induced travel demand. The issue is nevertheless worth discussing in 
some detail. The discussion will be based on studies published after 2000, both review 
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studies and evaluations of the impacts of specific road projects. The review does not aim 
to be complete, but to give an impression of what different studies have found. 
 
Noland and Lem (2002) reviewed evidence of induced travel demand in the United States 
and United Kingdom. Six estimates of the long-term elasticity of vehicle kilometres of 
travel with respect to lane kilometres (miles) per capita varied between 0.707 and 1.160, 
with an average value of 0.880. Note that if the elasticity is 1, all additional road capacity 
is consumed by increased traffic, meaning that there will still be congestion (although, as 
a result of traffic growth, more cars will be stuck in traffic) and no saving in travel time. 
In models using instrumental variables, to control for endogeneity in the supply of road 
capacity (meaning that roads are expanded when they become too congested), elasticity 
estimates varied between 0.289 and 1.944, with a mean value of 0.997; very close to 1. 
In a table listing elasticity estimates in previous studies, values varied between 0.29 and 
1.1. For some studies, an interval was given. The mean value of the elasticity of vehicle 
kilometres with respect to lane kilometres, using the midpoint value in studies giving an 
interval (e.g 0.65 if the interval was 0.5-0.8), was 0.595. 
 
Cervero (2003) conducted a path analysis of the long-term impacts of 24 road expansion 
projects in California. The long-term elasticity of traffic volume with respect to speed was 
0.637. 
 
Elvik and Amundsen (2004) evaluated road safety effects of four major road construction 
projects in the city of Oslo. As part of the evaluation, data on traffic volume was 
collected. Controlling for changes in traffic volume in Oslo in general, the four projects 
generated induced traffic of 6, 15, 20 and 40%. The corresponding increases in road 
capacity, crudely estimated, were, respectively, 20, 50, 50 and 100%. This gives 
elasticities of 0.30 (6/20), 0.30 (15/50), 0.40 (20/50) and 0.40 (40/100). It should be 
noted that these are short-term elasticities, which tend to be lower than long-term 
elasticities. 
 
Elvik et al. (2017) evaluated road safety effects of a new motorway in Norway. Traffic 
increased by 82%, compared to 28% in Norway as a whole during the same period. 
Thus, net induced traffic was 42% (182/128). Road capacity increased by about 100%, 
making for a short-term elasticity of vehicle kilometres with respect to road capacity of 
0.42 (42/100). 
 
Tennøy et al. (2019) evaluated two cases of urban road expansion in Norway. In one 
case, expansion from two to four lanes was associated with a traffic growth of 53%, 
compared to 30% for Norway as a whole. If expansion from two to four lanes represents 
a 100% increase in capacity, short-term elasticity in this case was 0.18. In the other 
case, a road was expanded from two to four or five lanes. Traffic increased by 78%, 
compared to 22% in Norway in general. Again, if the increase in capacity is roughly 
estimated as 100%, elasticity of vehicle kilometres with respect to road capacity 
becomes 0.46. 
 
Finally, Hymel (2019) developed ten estimates of the long-term elasticity of vehicle 
kilometres with respect to urban lane kilometres per capita, ranging between 0.703 and 
1.063. A simple mean of the estimates is 0.811. He also listed previous studies. A simple 
mean of the elasticities estimated in those studies is 0.817. All were positive. 
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It is clear that an increase in road capacity is likely to induce more traffic. The summary 
estimates of long-term elasticities presented above are fairly consistent: 0.880 (Noland 
and Lem), 0.997 (Noland and Lem), 0.595 (Noland and Lem), 0.637 (Cervero), 0.811 
(Hymel) and 0.817 (Hymel). The mean of these estimates is 0.789. 
 
It is therefore suggested that an elasticity of 0.75 is applied, with an upper bound of 1 
and a lower bound of 0.5. This means that vehicle kilometres of travel are predicted to 
grow at a rate of 75% of the increase in road capacity, in other words a parallell line to 
the dose-response curve, starting at the same point (100) and ending at a value of 190 
at 100% market penetration, compared to a final value of 220 for the road capacity 
dose-response curve.  
 

5.2 Shifting between automated and manual driving 
SAE level 3 vehicles are referred to as conditional automation. These vehicles may 
operate automatically in certain operational domains. An operational domain may be 
defined as, for example, a certain type of road or certain environmental conditions. When 
the vehicle leaves an operational domain, the driver will be requested to take over 
control of the vehicle. Several studies have shown that prolonged driving in an 
automated mode makes drivers adapt to automation in ways that make them ill-
prepared for taking over control. 
 
In an early driving simulator study, Jamson et al. (2013) found that in automated mode 
drivers: 
 

• Spent less time driving with a small safety margin (5.82% vs 8.26%), suggesting 
a gain in safety, 

• Had their eyes closed more of the time (3.8% vs 1.8%), suggesting a loss of 
safety, 

• Used the radio more of the time (54.1% vs 41.1%), also suggesting a loss of 
safety. 

 
The net impact of these behavioural adaptations is difficult to predict. Based on 
naturalistic driving data, Dingus et al. (2016) estimated the risk associated with following 
too closely to 13.5 (i.e. those who followed too closely had an accident rate 13.5 times 
higher than those who did not follow too closely). Closing your eyes was not included, 
but, analogously, looking away from the road had a risk of 7.1. Operating the radio 
(turning on/off, tuning) had a risk of 1.9. 
 
Eriksson and Stanton (2018) summarise a number of studies of driver reactions to take 
over requests. The studies they reviewed reveal a tendency for drivers to react more 
slowly if the time budget for taking over is long than if the time budget for taking over is 
short.  
 
Zhang et al. (2019) report a meta-analysis of 129 studies of take-over time. The time 
budget given was up to 30 seconds, but in most cases between 5 and 10 seconds. A 
larger time budget was associated with longer response times. A curve fitted to the data 
indicated an increase in mean response time from about 1 second with the shortest time 
budget to about 7 seconds with the largest time budget. 
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Presumably all these trials refer to situations involving a controlled transfer of control 
from the car to the driver. By controlled is meant that the car knows that it is 
approaching the end of an operational domain, e.g. it will soon exit a motorway or the 
motorway ends. In such situations the system may offer a takeover time budget of up to 
10 seconds. If a situation is unexpected, such takeover times can be unrealistic. If an 
animal suddenly jumps out in front of the car, there may not be enough time to react, 
irrespectice of whether the automation technology reacts or the driver is asked to react. 
The machine learning capabilities of automated vehicles can remember and retrieve 
information about regularly occurring and predictable events. It can, for example, 
remember the curvature of a road and prepare for the next curve. It cannot remember or 
prepare for an event that has never occurred before and develops suddenly. There will be 
such events. 
  
Drivers adapt very quickly to automated driving. In a driving simulator trial reported by 
Omozik et al. (2019), it took only 4 minutes of automated driving before drivers started 
to glance away from the road for at least 2 seconds per glance. Once into the habit of 
looking at something other than the road, drivers continued to do so as long as 
automated driving lasted. Even a short interruption in automated driving did not break 
the habit of glancing away from the road. Paying attention to roads and traffic is 
demanding. Not having to do so reduces cognitive load, something drivers learn very 
quickly. 
 

5.3 Safety margins – contagion models 
Connectivity is a technology that is likely to be implemented before vehicles reach the 
highest level of automation. Connectivity can increase road capacity (or, more precisely, 
utilise it more effectively) and reduce fuel consumption by packing vehicles densely 
together in platoons. 
 
One should be very clear about the fact that the advantages of platooning are realised by 
greatly reducing the safety margins human drivers adopt when following each other. 
Hence, if human drivers start imitating a platoon, by adopting equally small safety 
margins, there could be an increase in rear-end collisions, at least during a transition 
period before all vehicles have connectivity and are obliged to enter a platoon when 
entering a motorway. 
 
In a transition period, it is possible that one or more lanes on multilane highways could 
be reserved for platoons, while the other lanes are used by manually driven vehicles. 
How will driving next to a platoon influence the headways adopted by human drivers? 
Gouy et al. (2014) performed a driving simulator study intended to shed light on this 
question. Three conditions were compared: 
 

1. A platoon with short headway (0.3 seconds) 
2. A platoon with long headway (1.4 seconds) 
3. No platoon 

 
When no platoon was present in the adjacent lane, the mean time headway was 3.3-3.4 
seconds. In the short headway platoon condition, drivers reduced their mean time 
headway to 1.87 seconds. In the long time headway platoon condition, drivers reduced 
their mean time headway to 1.99 seconds. These are reductions of about 40-45% 
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compared to the no platoon condition, which indicates considerable behavioural 
adaptation. 
 
While a time headway or more than 3 seconds is generally regarded as safe, shorter time 
headways require faster reactions to be safe. Reaction times vary between drivers; 
however, headways less than 1 second are generally regarded as unsafe. Although a 
driver may be able to react in less than one second, the remaining time will be too short 
to come to a safe stop. 
 
A recent study by Rahmati et al. (2019) found that human drivers follow automated cars 
at a shorter distance than human driven cars. 
 
Many years ago, Evans and Wasielewski (1982) studied the relationship between 
everyday driving behaviour and accident involvement. One of the characteristics of 
behaviour they included was time headway (observed from bridges across motorways; 
number plates were recorded and matched to driver records). For headway, they found 
the relationship shown in Figure 26. 
 
 

 
Figure 26: Relationship between time headway and accident involvement. Source: Evans and Wasielewski 

1982, Figure 3a. 

 
The relationship has a U-shape, although the bottom of the U is quite shallow. For drivers 
with a headway of less than 1 second, accident involvement increases. Headways 
between 1.5 and 3 seconds are not related to accident involvement; indeed, there is a 
weak tendency for accident involvement to be higher among drivers adopting the largest 
time headways. These drivers may trust their skills less than other drivers and for that 
reason choose larger time headways. There is, however, no doubt that adopting very 
short time headways increases accident involvement. 
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It should be noted that all accidents were included in this study. Had only rear-end 
collisions been included, a stronger relationship to time headway would most likely have 
been found. Yet, the fact that the study is old and that it is the only one of its kind 
means that it cannot be used to predict the impacts on accidents of behavioural 
adaptation to platoons. It seems likely that there will be behavioural adaptation, and that 
this will be detrimental to safety, but quantifying the effect would be speculative. 
 

5.4 Interactions between automated and non-
automated road users 

One of the biggest challenges in developing automated vehicles is to ensure safe and 
effective interactions between automated vehicles and non-automated road users. Today, 
interactions between road users are partly governed by formal rules, partly by informal 
conventions. Interactions may rely on subtle cues that automated vehicles will be unable 
to grasp or perform. 
 
Heymann and Degani (2019) have proposed a protocol for the interaction between 
automated vehicles and pedestrians at pedestrian crossings. The protocol can be 
explained by reference to Figure 27. 
 

 
Figure 27: Outline of zones used to define interaction at pedestrian crossings. Source: Heymann and Degani 

2019 

 
An active crosswalk region (detectable by vehicle sensors) is delineated ahead of a 
pedestrian crossing. When a vehicle enters this region, it transmits a crosswalk 
recognition signal, i.e. a signal that informs pedestrians that the vehicle knows that it is 
approaching a pedestrian crossing. If the vehicle, when entering the active crosswalk 
region, detects a pedestrian in the crosswalk request zone or in the crossing itself, it 
transmits a stopping commitment signal to the pedestrian. This signal is also displayed to 
other vehicles in the active crosswalk region. The vehicle(s) come(s) to a full stop at the 
stopping line. 
 
A pedestrian who is in the request zone is obliged to cross the road provided that: (1) 
There are no vehicles in the active crosswalk region, or (2) All vehicles in the active 
crosswalk region have stopped or indicated that they will stop. Vehicles start moving 
again when all pedestrians have crossed completely. 
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If complied with by everybody, this protocol ensures that automated vehicles will give 
way to pedestrians, who may cross in safety. Yet, promising as the protocol is, it is easy 
to imagine situations in which it will not function as intended. 
 
First, not all pedestrians intend to cross the road. Depending on the width of the request 
zone, a pedestrian who intends to continue walking without crossing, may have to enter 
the request zone. Vehicles will then be erroneously informed that a pedestrian intends to 
cross and stop to wait for the pedestrian. Some limit on waiting time must then be 
imposed before vehicles start moving again. 
 
Second, a pedestrian may enter the request zone when a vehicle approaches the end of 
the active crosswalk region. Will the vehicle then come to a sudden stop, or will it 
continue and pass the crosswalk? There will be a dilemma zone, and misunderstandings 
about who gives way when a vehicle is in the dilemma zone will lead to accidents. 
 
Third, to provide maximum safety the length of the active crosswalk region must be 
sufficient for large and heavy vehicles to stop. While heavy braking may not be a 
problem for a driverless truck, it could be a problem for a bus. A bus cannot slow down 
too fast; otherwise occupants may fall inside it and get injured. A long active crosswalk 
region could tempt pedestrians to cross before vehicles have reached the stop line. If all 
pedestrians manage to do so, an ambiguous situation may once again arise. When the 
vehicle reaches the stop line, all pedestrians will have crossed already and there is no 
longer any need to stop. How quickly will the system understand this? 
 
Fourth, will the same rules apply to cyclists as to pedestrians? In Norway, a cyclist 
cannot cycle across a pedestrian crossing, but has to give way to cars. If, however, the 
cyclist dismounts, he or she is regarded as a pedestrian and then has the right of way. It 
should come as no surprise that most cyclists do not follow this rule. The stay mounted 
and cycle across the crossing and cars give way to them. This outcome is in everybody’s 
interest (Bjørnskau 2017). It saves time both for cyclists and the car drivers. But it is an 
informal solution, which violates the legal regulation. 
 
Fifth, there will be drunk pedestrians (and cyclists) who do not understand the system 
and will not comply with it. They may, for example, enter the crossing without looking for 
vehicles or stay put in the request zone so long that cars start moving, and only then 
start to cross the road. All sorts of aberrant, irrational behaviour can be imagined. 
 
It therefore seems likely that there will be behavioural adaptation to a system as outlined 
in the protocol by Heymann and Degani (2019). It is likely that such behavioural 
adaptation will reduce the effectiveness of the system and make it unlikely that it will 
prevent all crashes involving motor vehicles and pedestrians. However, any numerical 
estimate of the adaptation effect would be speculative. 
 

5.5 Overloading bridges by platooning 
The prospect of increased road capacity due to automated driving leads to the question 
of effects on infrastructure wear. Shortening of the headway distances leads to a higher 
number of vehicles on road sections of a given length. The primary effect on 
infrastructure wear is expected to arise from more concentrated loads of heavy vehicles 
in combination with automated driving. Especially the formation of truck platoons, which 
should reduce fuel consumption by using positive aerodynamic effects, will lead to an 

https://dict.leo.org/englisch-deutsch/fuel
https://dict.leo.org/englisch-deutsch/consumption
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increased loading of roads and bridges compared to a single vehicle entity. By contrast, 
increasing the number of passenger cars on sections will have minor effects on 
infrastructure loading. Secondary effects of automated driving are expected to manifest 
themselves in changed traffic flows and possibly modified dynamic amplification of axle 
loads on bridges. 
 
Most impacts of changed loading are expected to concern bridges. The standards for 
designing are regulated by the European Committee for Standardization (CEN), which 
covers almost all member countries within the European Union. There is a master code 
with the main regulations; each member state has his own national annex for covering 
regional requirements. The load models are regulated in the Eurocode 1991-2 “Traffic 
loads on Bridges”. This code defines the characteristic load model for dimensioning new 
main bridges. The so-called Load Model 1 (LM1 is based on a 1000-year return period of 
traffic loads (based on a reference in 2003) which is equal to a probability of exceedance 
of 5% in 50 years for traffic on the main roads in Europe (Calgaro 2008). This enables to 
fulfill the structural safety regulations of the CEN Standards which should cover the 
design life of 100 -120 years or more. This restriction is predominantly used for the 
design of new bridges. For assessing existing bridges, the remaining service life is 
generally less than the design life and it may be more appropriate to use a shorter return 
period of traffic events, which is equivalent to a lower level of safety (Leahy 2016). There 
are different approaches for assessment of existing bridges. Leahy (2016) suggested a 
return period of 75 years (as it is used in bridge design in the United States). 
  
Another aspect is the change of load patterns due to automated traffic. Stochastic traffic 
produces random forces, while automated driving or truck platoons lead to synchronised 
traffic flows with synchronised loading. Synchronization will change the dynamic 
interaction or can increase the horizontal loading, for example in case of an emergency 
braking performed by the whole truck platoon. It will be necessary to identify the 
changed load impacts as a consequence of the truck platoon configuration and to 
investigate their effects on infrastructure components. For example, bridges with smaller 
spans (< 30 m) are more sensitive to dynamic interactions, while longer bridges will be 
more restricted by the maximum number of trucks on the bridge. Steel bridges with low 
dynamic damping factor behave differently than concrete bridges.  
 
The most relevant load impacts are expected on bridges, which will be: 

a) Vertical loading  
b) Horizontal loading  
c) Dynamic interaction  

 
Ad a) It is obvious that increasing the number of trucks/per h or shortening the headway 
distances leads to a more trucks per section which changes the infrastructure loading. 
The effects of vertical loading are mainly dependent on the vehicle weight, the bridge 
span and platoon length/headways and must meet the bridge design restrictions. 
  
The change of load can be demonstrated in the following example: A truck platoon 
consisting of 8 trucks, with average truck load of 39 tons (390 kN) and a single truck 
length of 14 m, is passing with a speed of 80 km/h over a bridge with a length of 128 m. 
Using a common mean time headway of 2 seconds (44.4 m) results in a total bridge 
loading of 2.19 trucks or 85 tons. Reducing the distance between the vehicles to 2 m, the 
whole platoon will fit with its 8 trucks or 312 tons on the bridge, which is an additional 
loading of + 267 %. 
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     Axle spacing[m]   Axle weight [kN] 
 
Example of an equivalent trailer truck according to EN 1991-2 (Calgaro 2008). 
 
Other restrictions of increased loading could arise from torsional effects due to different 
loading in individual lanes, or due to local effects corresponding to transverse bearing 
capacity.  
 
Ad b) The change of horizontal loading is mainly expected as the change of braking 
loads due to abrupt braking of a whole truck platoon on a bridge. According to EN 1991-2 
new bridges are designed to a horizonal load which is depending on the total bridge 
length (Calgaro 2008): 
 

𝑄𝑄𝑙𝑙𝑙𝑙 = 360𝑘𝑘𝑘𝑘 + 2,7 𝐿𝐿 < 900 𝑘𝑘𝑘𝑘     𝑓𝑓𝑓𝑓𝑓𝑓 1,2𝑚𝑚 < 𝐿𝐿 < 200 𝑚𝑚 
 
For bridge with 1,2 m length the horizontal load Qlk due to breaking of LM1 would be 
363 kN and rises to a maximum of 900 kN for bridges with 200 m length.  
The effects can be illustrated using the above truck platoon with 8 trucks, which 
performs an emergency break with deceleration of 6 m/sec² (dry asphalt) on a bridge 
with length L=128 m. Applying Newton’s law (force = mass times acceleration), the 
acting horizontal force of the platoon is: 
 

𝑄𝑄𝑙𝑙𝑙𝑙 𝑝𝑝 = 𝑚𝑚 ∗ 𝑎𝑎𝑏𝑏 =  8 ∗ 39000 𝑘𝑘𝑘𝑘 ∗ 6 𝑚𝑚𝑠𝑠−2 = 1.872 𝑘𝑘𝑘𝑘 
 
This is far more than the Eurocode load, which would be only 706 kN. It cannot be 
guaranteed that existing bridges are designed for that level of horizontal forces.  
Other effects of horizontal loads are centrifugal loads or accidental loads of single 
straying trucks. Here also, some changes can be expected due to platooning. 
 
Ad c) Dynamic effects are mostly observed when the traffic flow changes from random 
to more synchronised forms. The changed dynamic amplification and possibly increased 
resonance loading effects, which are well-known from railway bridges, could now act also 
on existing road bridges, which were not designed for that. 
 
In general, the dynamic effect of traffic loads is determined by many factors, such as 
maximum bridge span length, bridge natural frequency, vehicle weight, axle loads, axle 
configuration, vehicle suspension properties, current vehicle position on the bridge, 
quality of pavement, and stiffness of structural members. However, a large contribution 
may be attributed to vibrations of the vehicle induced by the road profile roughness, 
depending on the velocity and road surface unevenness (Cantieni 1992, Prat 2001). 
Changed fatigue consumption of bridges and their components due to synchronised 
loading could affect the expected bridge lifetime.  
 
The effects of changed loading due to automatisation and truck platooning must consider 
existing bridges and detailed investigation of different bridge types and truck platoons 
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are needed for assessment of these effects. Bhoopalam et al. (2018) stated that 
measures to fullfill the infrastructure needs could lead to restrictions on maximum weight 
or smart division of truck loads, or decoupling of truck platoons at bridges. Other 
measures could be temporary changes in the truck platoon speed or changes of headway 
distances, so that the bridge loads would not exceed the original design levels. Another 
option would be legal limitations on the total number of trucks in a platoon, as 
demonstrated in the lessons learnt of European truck platooning challenge (Eckhardt et 
al. 2016). 
 

5.6 Cyber risks 
The purpose of this section is to investigate the effects of CATS on cyber security of the 
transport system. This is done by conducting a security risk assessment as described by 
the Norwegian Standard for Security Risk Assessment (Standards Norway, 
NS5832:2014). NS5832:2014 describes how to carry out a risk assessment when the 
probability of events is difficult or impossible to calculate. Scenarios have been developed 
to describe some types of events that may occur. 
 
A security risk assessment, as described in NS5832:2014, consists of seven steps: 

(1) Asset identification  
(2) Determination of security objectives 
(3) Threat assessment  
(4) Scenario selection 
(5) Vulnerability assessment 
(6) Assessment of pure (negative) risk 
(7) Presentation of the risk situation 

 
Asset identification (1) consists of mapping, assessing and ranking the assets (both 
material and non-material) that are at risk. Determination of security objectives (2) 
involves deciding what is the desired or acceptable conditions for the assets during or 
after an undesired event. The threat assessment (3) should identify and describe 
possible malicious actors, their intention and capacity for attacking. Scenario selection 
(4) should result in scenarios that are based on assessments of consequences and 
threats, and is considered as relevant for further analysis. The vulnerability assessment 
(5) should point out which vulnerabilities, or security weaknesses, that a threat actor can 
exploit in the selected scenarios. Finally, the assessment of pure risk (6) should compile 
the results from the consequences, threat and vulnerability assessments to an 
assessment of the pure risk for each scenario, and the presentation of the risk situation 
(7) should summarise the pure risk for all the selected scenarios. 
 
5.6.1 Asset identification 
 
A traditional transport system consists of:  

(1) vehicles (cars, buses, bicycles etc.),  
(2) the infrastructure the vehicles use (roads, bridges, tunnels, the network of fuel 

providers etc.), and  
(3) transport providers (taxi drivers, public transport companies, logistic companies) 
(4) people using the transport system incl. passengers in vehicles, bicyclists, 

pedestrians and children that play in the streets 
(5) commodities that are being transported 
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CATS will also comprise of connectivity elements: 

(6) systems collecting, processing and distributing information about weather, traffic 
and road works to enable vehicles to optimise travel choices.  

(7) platforms for ordering and distributing vehicles wherever and whenever transport 
is sought. 

(8) servers providing (automatic) updates of vehicles. 
 
Finally, CATS will collect vast amount of data:  

(9) data about when and where people travel 
 
Which of the above elements are critical for the transport system to be working? (1) No 
single vehicle is critical for the transport system as such, but connectivity makes it 
possible to immobilise a larger share of the vehicles, which can seriously hinder 
transport. (2) The infrastructure the vehicles use is the same as used by non-
autonomous vehicles. Some parts of the infrastructure can be bottle necks (bridges, 
tunnels etc.) and these points could be clogged by immobilised vehicles or hacking of 
equipment installed at these points (barriers, traffic signals etc.). (3) Most transport 
providers are not critical for the transport system. An exception might be monopolists in 
an area, such as Ruter which is responsible for all public transport in the Oslo area. (4) A 
single person is not critical for the workings of the transport system. Public incidents 
where individuals are killed, seriously injured or hijacked in an autonomous vehicle 
might, however, scare the general public from using autonomous vehicles. (5) Most 
commodities are not of critical value. 
 
(6) Systems that provide information for vehicles to optimise travel choices increase the 
efficiency of the transport system, but are not critical for the working of the transport 
system. Downtime or misinformation in such systems, especially if there exists only one 
such system, can create traffic jams. (7) Platforms for ordering and distributing vehicles 
are critical in a situation where all vehicles are for public hire instead of private. In a 
situation with few platforms for ordering and distributing vehicles these can be critical for 
the transport system to be working. (8) Servers providing (automatic) updates can 
compromise a large amount of vehicles at the same time so that so many are not 
working/clogging the streets that the transport system stops working properly.     
(9) The data produced is also part of the transport system. Data about individuals travel 
patterns are sensitive and can provide information about individuals and if it gets astray 
could reduce trust in the transport system. Data about travel patterns at a higher level 
will be used to plan the transport system and can be misused by a malicious actor.  
A final value connected to (4) and (9) is confidence in the transport system. If potential 
users do not believe that it is safe to use the transport system, they might choose to not 
use it after all. Fear of getting killed, injured or being victim of crime might make people 
not travel. 
 
The most important value is of course the people in the transport system. If everybody 
using the transport system were killed, the transport system would have no purpose 
anymore. However, the likelihood of managing to kill all the people using a transport 
system in one cyberattack is low. And cyberattacks causing a few deaths does not per se 
threaten the transport system (but might make people avoid using the transport system 
and thus threaten its existence). Individual elements that can be critical for the 
functioning of the transport system are (1) servers that provide updates to a large 
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number of vehicles, (2) platforms ordering and distributing transport, (3) physical bottle 
necks in the transport system and (4) energy refilling infrastructure (including fossile 
fuels, electricity, hydrogen etc.). In a situation where people have the option of not 
travelling/using alternative transport (such as non-autonomous vehicles), confidence in 
the transport system also is a critical value for the transport system. 
 
5.6.2 Security objectives 
 
Before delving into incident-specific security objectives, general security objectives for 
connected and autonomous cars are discussed.  

1. The first objective is an absolute reduction in the number of killed and seriously 
injured road users compared to the current situation, and a reduction in the risk 
of being killed or seriously injured per kilometre travelled. This objective is not 
especially ambitious given the fact that some countries already aim for zero 
fatalities and seriously injured road users (Vision Zero).   

2. The second objective is that cyberattacks should not incur larger costs on society 
than the efficiency gains achieved by the introduction of connected and 
autonomous vehicles. 

3. The third objective is that breakdown-time, the time the transport system does 
not work, should be maximum 48 hours per year. Heavy snowfall causes school, 
public transport and other public functions to close down many places and at least 
48 hours of downtime per year is not uncommon. 

4. The fourth objective is that breakdowns in the transport system should not cause 
so many delays in emergency missions that the number of people dying and the 
economic costs outdo the gains of the first and second objectives. 

5. The fifth objective is that the confidence in the transport system should be so 
large that 95% of the population are willing to travel by connected and 
autonomous vehicles. 

6. The sixth objective is that the confidence in the transport system should be so 
large that 90% of the population report that they feel secure when travelling with 
connected and autonomous vehicles. 

 
The general security objectives can be translated into incident-specific security 
objectives; the desired or acceptable conditions for the assets during or after an 
undesired event. A difficult question is whether it matters how large the consequences 
are of a single cyberattack when the consequences of all cyberattacks still meets the 
general objectives (as described above). For the objectives of number of deaths and 
seriously injured and economic costs of cyberattacks it does not matter whether the 
unwanted consequences are caused by one large incident or several smaller incidents. 
Large incidents might cause more attention and thus fear, but for society it is irrelevant 
whether all the fatalities occur in June or are evenly distributed throughout the year. For 
downtime of the transport system the answer is different: Small delays have seldom 
large consequences, while longer delays can cause shortages of commodities et cetera. 
The general objectives of confidence in the transport system might be obtainable for 
most of the time, but perhaps not just after a cyberattack that has caused a lot of 
damage and/or received a lot of attention. 

7. The first incident-specific objective is that no cyberattack should cause more 
fatalities and seriously injured than defined by the first general security objective 
per year. 
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8. The second incident-specific objective is that no cyberattack should incur larger 
economic costs than defined by the second general security objective per year. 

9. The third incident-specific objective is that no cyberattack should cause more than 
24 hours of downtime of the transport system. 

10. The fourth incident-specific objective is that no cyberattack should delay 
emergency missions such that people die, fires develop further and conflict 
situations escalate into violence because of the delay. 

11. The fifth incident-specific objective is that 7 days after a cyberattack at least 90% 
of the population should be willing to use autonomous vehicles again. 

12. The sixth incident-specific objective is that 21 days after a cyberattack at least 
80% of the population should report that they feel safe as passengers of 
autonomous vehicles. 

 
5.6.3 Threat assessment 
 
Hacking refers to “activities that seek to compromise digital devices, such as computers, 
smartphones, tablets, and even entire networks” (Malwarebytes, 2019). Connected and 
autonomous vehicles are examples of digital devices that can be hacked. 
Hacking is typically technical in nature. But hackers can also use psychology to trick the 
user into clicking on a malicious attachment or providing personal data. These tactics are 
referred to as “social engineering” (Malwarebytes, 2019). Furthermore, the control 
systems in autonomous vehicles suffer from limitations that can be exploited by a 
malicious attacker. For example, the autopilot of Tesla vehicles has been shown to 
interpret white crossing vehicles as brightly lit sky and act accordingly (Hawkins, 2019). 
A malicious attacker could change the physical environment to make the control system 
in the autonomous vehicle act differently. In this section, the term “autopilot 
manipulation” is used to describe malicious attacks where the “hacker” changes the 
physical environment to manipulate the autonomous vehicle to act differently. 
 

Cybercriminals can be distinguished by motive. Zamora (2018) lists six main motives for 
hacking:  

(a) Fun/the challenge: When the Black Report (Pogue, 2018) asked hackers about 
why they hack (several answers possible), 86 percent replied that they liked the 
challenge of hacking and hacked to learn. Additionally, 35 percent said they did it 
for the entertainment value or to make mischief (Pogue, 2018). 

(b) Financial gain: 21% of the respondents in the Black report survey replied that 
they hacked for financial gain (Pogue, 2018).  

(c) Emotional: Some of the most destructive cybercriminals act out of emotions, such 
as rage, revenge, “love” or despair. These criminals may cyber stalk, access 
accounts without authorisation or use Internet of Things (IoT) to commit domestic 
abuse (Boyd, 2018; Zamora, 2018). 

(d) Ego: Strengthening a weak ego is a motivation that can be caused by several 
psychological vulnerabilities, such as insecurity, financial woes and emotional 
turmoil (Zamora, 2018). 

(e) Political/religious: Six percent of the hackers in the above survey replied that they 
did it for social or political motives. Such activities can be labeled as hacktivism, 
cyber terrorism and/or state-supported cybercrime (Zamora, 2018). 

(f) Sexual impulses/deviant behavior: This sixth and last category encompass deviant 
acts motivated by sexual compulsion; rapists, sexual sadists, pedophiles and 
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serial killers can either use their own skill or hire unscrupulous people to carry out  
predatory sexual behaviors (Zamora, 2018).  

 
It is also possible to distinguish by hacking actors by capacity: The lone hacker (i), an ad 
hoc group (ii), an organised group (iii), a state-supported group (iv), and a state (v).  

(i) A lone attacker may have more or less capabilities, but does commit the attack 
alone, which often limits what the attacker can do. An example of a lone attacker 
would be a rejected lover wanting to take revenge by stealing information from 
the ex-lover’s digital device and then use it to destroy this person’s life. 

(ii) An ad hoc group is a temporary group formed of people with hacking capabilities 
to do some mischief. They do not have a formal hierarchy, but have a common 
goal; such as anger towards an organisation/a company/the authorities or 
financial gain.  

(iii) An organised group collaborate frequently and have designated roles, which 
enables the group to employ its human resources more efficiently in a 
cyberattack. 

(iv) A state-supported group is an organised group that gets support from a 
government and thus have even more resources available when attacking. Such 
groups typically inflict harm that the government wants to cause, but cannot 
legitimately do themselves. 

(v) We say that the attack is conducted by the state if any part of the government’s 
formal organisation conducts the attack. 

 
In the next section, the above actors and motivations are combined to produce some 
scenarios. 
 
5.6.4 Scenario selection 
 
Five scenarios that describe how malicious actors can proceed to adversely affect the 
assets have been created for further analysis. These scenarios cover 4 out of 6 
motivations for hacking (for the fun/challenge, financial gain, emotions, 
political/religious) and 4 out of 5 actor capacities (lone actor, ad hoc group, organised 
group, state).  
 
• Playful teenagers 
 
Three teenagers, who are very interested in computers and autonomous vehicles, decide 
that they want to play with a full-sized vehicle. One of the teenagers has an uncle who 
has just bought a fully autonomous vehicle and they decide to hack the vehicle to use it 
as a remote-controlled car. They have access to the uncle’s home and there they find the 
vehicle’s id and other information about the vehicle that makes it easier to gain control 
over it. The teenagers use a couple of weeks browsing the internet to obtain information 
on how to hack the vehicle and software/scripts that they can use in the hacking.  
 
One weekend, when they know that the uncle has left the country for a short holiday, 
they hijack the vehicle. They manage to get it to travel from the uncle’s home to the 
school the teenagers are attending. They discover, however, that they cannot control the 
speed of the car. They, therefore, search the internet to see if they can find software that 
make it possible to control the speed. They find such software and manage to install it 
into the vehicle computer.  
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They make the car drive into the street again and this time faster than the speed limit 
and faster than the road environment permits. The vehicle drives past a lawn where 
some children are playing with a ball. One child throws the ball so that it ends up in the 
road and another child runs after it. The autonomous vehicle’s sensors discover the child, 
but the vehicle’s speed is so high that it is not physically possible for the vehicle to slow 
down enough before it hits the child and the child is killed immediately.    
 
• Kidnapping for ransom 
 
A group of organised criminals are looking for new ways of earning money. They recruit 
some members that are adept at hacking and decide to kidnap the ten-year-old child of a 
billionaire in their geographical proximity. The billionaire has just bought one of the 
newest autonomous cars available on the market. The hackers suspect that the vehicle 
has been released to the market prematurely and that there still are bugs in the software 
that can be exploited in a cyberattack.  
 
The hackers successfully gain access to the in-vehicle system and manage to put 
surveillance on the vehicle. They are able to follow the vehicle’s movements in real time 
and to listen in on communication and other sounds inside the vehicle. They quickly 
discover that the child attends dancing lessons every Tuesday evening. The hackers also 
gain access to the control system and locking system. 
 
The group of organised criminals decides to strike one such Tuesday evening. First, they 
plant a mobile phone jammer under the vehicle while it is waiting to pick up the child. 
When the dancing lesson has finished and the child is on the way home, the hackers lock 
the vehicle and make it impossible for the child to open it. They also hijack the vehicle so 
that it is driven to a predefined site in the forest. All the time they are listening for 
sounds that reveal that the child is noticing that something is wrong. At the moment they 
understand that the child gets worried, they turn on the mobile phone jammer.  
When the vehicle has arrived at the predefined site in the forest, the organised criminals 
open the locks and take the child to a prepared safe place. At the safe place, they make 
a ransom movie that shows that child is physically unhurt and present their ransom 
demand. When the criminals have received the money, they give the child back to the 
parents.  
 
Initially, the parents do not want it made public that they gave in to ransom demands, 
and keep the hijacking secret. However, after deliberating it with their lawyers, they 
decide to sue the manufacturers of the autonomous vehicle for not having invested 
enough in cyber security to prevent such hijackings. The subsequent media attention 
reduces public confidence in autonomous vehicles and some people avoid using such 
vehicles for some time. 
 
• Domestic abuse 
 
An IT-expert has been rejected by a lover after a couple of months of dating. The ex-
lover had just obtained an autonomous car and all the user information and 
documentation was lying around in the ex-lover’s apartment, easily accessible for the IT-
expert. The IT-expert was curious about the technology and had therefore spent some 
time reading up on all the documentation when visiting the ex-lover.  
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The break-up is ugly and the IT-expert feels hurt and badly treated by the ex-lover. The 
IT-expert decides to take revenge by playing some “tricks” on the ex-lover. The IT-
expert succeeds with hacking the vehicle, gaining access the control system, heating 
system and the locking system.  
 
The IT-expert conducts the cyberattack one cold winter morning when the ex-lover is 
travelling to work. First, the IT-expert locks the vehicle and makes it impossible for the 
ex-lover to open the vehicle. Then the IT-expert make the vehicle drive a new route 
where the vehicle can drive at least 70 km per hour for many hours. Finally, the IT-
expert turns off the heating system, which makes the temperature in the vehicle very 
low. 
 
The ex-lover discovers quite fast that something is very wrong with the vehicle and calls 
up the emergency number. The police try to hunt down the vehicle, but experience some 
difficulty with intercepting the vehicle because the route is confusing and they therefore 
do not know where it is travelling next. Finally, after approximately an hour do they 
manage to intercept and force the vehicle to stop.  
 
The ex-lover is physically unhurt, but very traumatised. Since it is difficult to establish 
what caused the incident, public confidence in autonomous vehicles is seriously hurt and 
many people end up avoiding using such vehicles for a period. 
 
 
• Autopilot manipulation 
 
The introduction of autonomous vehicles has made private vehicle transport much more 
attractive and thus caused increased car traffic. Even if the new cars cause less or no 
exhaust emissions, they create particulate matter because of wear and tear when car 
tires meet the road surface. The increased car traffic has therefore caused increased local 
pollution and reduced air quality.  
 
Environmental organisations are furious about what they perceive as the politicians’ lack 
of willingness to implement measures that prevent increased car traffic. One of the more 
radical organisations decides to take action. They aim to reduce confidence in the 
transport system by exposing the vulnerabilities of the autopilots and, thus, decrease the 
use of autonomous vehicles. 
 
Many of the local branches decide to do a coordinated campaign. They decide on a date 
and time (a spring morning around 9am) for the demonstrations. They create physical 
dummies that are supposed to fool the autopilot into believing that the lane is going 
another way.  
 
Most of the branches succeed with misleading the vehicles to run off the road. The 
vehicles are seriously damaged, while the passengers suffer mostly from minor injuries 
and trauma. One branch, consisting of really furious teenagers, decides to mislead the 
vehicles into driving in the lane for the opposite direction of travel. This causes one large 
traffic accident with several people getting seriously injured. 
  
Public confidence in autonomous vehicles is seriously damaged and many people end up 
avoiding using such vehicles for a period.  
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• Paralysation of transport system 
 
Hostilities between two countries have been increasing for some time and the two 
countries are currently on the brink of war. One of the countries has decided to openly 
demonstrate its cyber capabilities and conduct a cyberattack.  
 
Through public sources, the intelligence services find out the share of different car 
brands in the target country. They select a car brand with 23% share of the vehicles in 
the country. After choosing a car brand, they identify the server that the vehicles get 
over-the-air updates from. They then use time to gain access to the server without being 
discovered.  
 
After gaining access to the server, the intelligence services add a hostile program to a 
scheduled update. The program is supposed to make all vehicles stop wherever they are 
located at 4 pm at a specific date (a week day) after the scheduled update. The 
intelligence services are successful in infecting all the vehicles of the car brand without 
being discovered. 
 
On the planned date, the hostile program switches on and all the vehicles stop abruptly. 
Many other vehicles do not manage to stop in time and this results in multiple traffic 
accidents all over the country. The immobile vehicles block other traffic, making it 
impossible to travel by car in many dense city areas. The immobile vehicles also impede 
emergency vehicles, delaying emergency missions and making it impossible to gain 
access for the emergency vehicles in some inner city areas. 
 
5.6.5 Vulnerability assessment 
 
Which vulnerabilities, or security weaknesses, can a threat actor exploit in the selected 
scenarios? Furthermore, will the developers will invest sufficient resources to cyber 
security to prevent such attacks?  
 
Fully autonomous vehicles are still being under development. Developers therefore have 
the opportunity to design in security, such as building encryption and cryptographic code 
signing into a vehicle’s system, minimising the attack surface hackers can abuse, and 
tightly locking down communications with the outside world (Thomson, 2018).  
 
Many of the vehicles already on the roads are connected and thus vulnerable to hacking. 
The industry has until now not been willing to invest the necessary amount of resources 
in cyber-security to prevent hacking. One possible explanation is that the car 
manufacturers have failed to realise that secure software is critical for automotive safety 
(Consumer Watchdog, 2019), but this explanation was more plausible a few years ago 
before several well-published hacking experiments (Osborne, 2018). Another possible 
explanation is that the industry is in a state of Nash Equilibrium in which all of the major 
car manufacturers are aware of the risk of hacking, but no one is motivated to 
unilaterally increase the expenditure on cybersecurity. Investing in cybersecurity diverts 
resources away from development of customer-visible features and thus make them less 
competitive. Since hardware and software differ between the manufacturers, an actual 
cyberattack will probably only hit one of the manufacturers. Each manufacturer may 
therefore prefer to gamble on not being targeted in a cyberattack until external forces, 
such as regulation, force them to increase expenditure on cybersecurity (Consumer 
Watchdog, 2019).  
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A third possible explanation for limited cybersecurity is that the manufacturers want to 
be able to harvest data to monetise it. To ensure that it is possible to harvest the data, 
all vehicles need to be accessible to a central computer collecting the data. 
 
• Playful teenagers 
 
In the past, cloning electronic keys has been the most common way of gaining illegal 
access to a vehicle. But vehicles are getting more connected with technologies such as 
WIFI and 3G,4G and 5G, giving hackers multiple ways to get in. More than a quarter of 
current attacks exploit vehicles’ cloud servers or mobile apps (Bird, 2019). In Britain, 
vehicle thefts have increased by 50% in five years partly because of criminals hacking 
keyless systems (Hull, 2019). In this scenario, the teenagers have access to the vehicle 
owner’s home, which may make it even easier to gain control over the vehicle.  
 
Vehicle manufacturers will have to deal with the risk of vehicle theft. GPS and other 
types of tracking might reduce thefts motivated by financial gain, but will not have the 
same preventive effect against perpetrators who only want to “borrow” the vehicle for a 
limited time. And even if the manufacturers spend enough on protection against 
unrightful access by strangers, it still might be possible to take control of a vehicle if one 
has access to the vehicle owner’s home. Hence, it seems probable that scenarios where 
people unrightfully play with other people’s autonomous vehicles will occur.  
 
Tuning up an engine to make a vehicle capable of going faster is also quite common, 
partly because tuning up rarely leads to penalties for the vehicle owner or other people 
responsible. And if anyone is able to create software that makes the vehicle drive faster 
than it is programmed to, they may also make the software available for anyone on the 
internet. Will manufacturers spend enough on cyber security to counter such hacking 
attempts? Since there are so many that may be motivated to manipulate autonomous 
vehicles’ speed, there is a real probability that a few of them will discover and exploit any 
vulnerabilities in the programming. It might therefore be impossible to stop it from 
happening at all. But it might be possible to monitor what hacking software is made 
available and send updates that counter such software whenever the manufacturers 
discover its existence. It may also be possible to monitor speeds of the vehicles in real 
time to detect whether the speed control has been manipulated. Even if it is not possible 
to stop all tuning up, it should be possible to discover vehicles that have been tuned up 
and prevent such programming being commonplace.  
 
A related question is whether the manufacturers will have incentives to spend the 
necessary amount of resources to prevent tuning up. That depends on whether they are 
held responsible for accidents caused by tuning up. If the manufacturers are able to say 
that they do not have responsibility for a traffic accident because someone modified the 
programming of the vehicle, they may not be willing to spend the right amount of 
resources to prevent tuning up. But if they are held responsible for not preventing speed 
manipulation, they will probably also be willing to do whatever is required to limit the 
extent of tuning up.  
 
In summary, it might be difficult to stop all unrightful overtaking of autonomous vehicles, 
especially by people who have access to the vehicle owner’s property. Still, if the 
manufacturers spend enough resources to prevent manipulation of vehicles’ speed, the 
worst consequences (the killing of the child) can be prevented.  
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• Kidnapping for ransom 
 
In this scenario, the kidnappers gain private private data about mobility patterns when 
preparing the crime. An important question is therefore whether the developers will 
choose to prioritise protection of private data. And will the manufacturers be held 
responsible if such data is unrightfully obtained?  
 
For manufacturers to be held responsible it must be discovered that private data about 
mobility has been accessed. In many situations such information leakage can be difficult 
to discover. And even if data obtained by hacking is used to conduct a crime against a 
person or property, it might still be a problem of proving that the crime in question was 
made possible by illegal access to private data. It is therefore uncertain whether the 
manufacturers will be willing to spend the necessary resources on protecting the vehicle 
users’ private data. 
 
In the kidnapping scenario, the kidnappers install a mobile jammer under the vehicle. 
Such jammers already exist on the market and are relatively inexpensive. 
 
In addition, the kidnappers gain access to the control system and the locking system. 
The control system is vulnerable because it is remote-controlled. It is plausible that it will 
be possible to spoof the real owner’s signals for capable hackers. The locking system is 
also vulnerable because modern vehicles are keyless and that makes them easier to open 
and lock for malicious actors (see discussion of vehicle theft in the above section about 
the playful teenagers scenario).  
 
In summary, it seems plausible that organised criminals can exploit new vulnerabilities 
caused by autonomous vehicles and more easily organise kidnappings without being 
caught. 
 
• Domestic abuse 
 
In the domestic abuse scenario, the IT-expert gains unrightful access to the control, and 
locking systems. The challenges of securing the control and locking systems against 
cyberattacks have been discussed in the above scenarios of playful teenagers and 
kidnapping for ransom.  
 
In addition, the IT-expert gains control of the heating system for the purpose of 
increasing the ex-lover’s suffering during the drive. Because of the convenience of 
entering a vehicle that has a comfortable temperature, the heating system will probably 
also be remotely controlled, and thus vulnerable to hacking. A relevant question is 
whether developers will prioritise to protect the heating systems from hacking. Since the 
main purpose of hacking the heating system must be to make travelling less comfortable 
(and not financial gain et cetera), fewer hackers will be motivated to conduct such an 
attack and less security is needed. There might, however, exist manual solutions 
protecting against cyberattacks on the heating system. For example, a manual switch 
that disconnects the heating systems from all networks.     
 
In summary, it seems plausible that domestic abusers with the right technical knowledge 
would be able to conduct such an attack as described in this scenario.  
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• Autopilot manipulation 
 
Artificial intelligence is vulnerable and early versions of autopilot have demonstrated 
some vulnerabilities. The autopilot of Tesla brands has repeatedly misinterpreted the 
broad side of large white semi-trailers as the bright sky, leading to two fatal traffic 
accidents with three years in between (Hawkins, 2019). Since the problem of 
misinterpretation still exists despite the seriousness of the first accident, the problem is 
seemingly difficult to solve. It is also reasonable to assume that AIs have many more 
vulnerabilities that will be discovered when autopilots/autonomous vehicles become more 
common. Such vulnerabilities can be exploited in protests as described above.  
 
Some researchers have actually succeeded in tricking a Tesla’s autopilot into driving into 
oncoming traffic. They used a can of paint and a brush to trick the Enhanced Autopilot of 
a Model S 75 into detecting and then following a change in the current lane onto the lane 
with opposite traffic (Tencent Keen Security Lab, 2019). Developers are undoubtedly 
doing their best to improve the autopilot and eliminate vulnerabilities. It is, however, 
uncertain whether it is possible to eliminate all such vulnerabilities.   
 
In summary, the developers should be motivated to prevent autopilot manipulation, but 
it is still uncertain whether it will be possible to prevent all such attacks.  
 
• Paralysation of transport system 

 
In the scenario, the attacker compromises all vehicles of a specific brand through the 
over-the-air update. The manufacturer should be motivated to prioritise investing in 
cyber security of update servers, and it is therefore not plausible that actors with 
medium-to-low capacity will manage to hack an update server. However, even if the 
manufacturers prioritise cyber security, it will be difficult to stop all high-capacity 
attackers. Even high-tech companies, such as Apple, Google and Microsoft, have 
experienced that their software update infrastructure has been hacked (Schmitt, 2019).  
Hence, a high-capacity attacker will probably be able to paralyse the transport system. 
 
• Summary 
 
In this analysis, we have included five scenarios, four scenarios where the attacker does 
only need limited capacity and one scenario only realistic to conduct successfully for 
high-capacity attackers.  

• The discussions of scenarios “Playful teenagers”, “Kidnapping for ransom” and 
“Domestic abuse” demonstrate that it might be difficult to stop all illegal 
takeovers of autonomous vehicles, especially by people who have access to the 
vehicle owner’s property.  

• The fourth scenario “Autopilot manipulation” requires very little technical 
knowledge to conduct successfully and it is uncertain whether it will be possible to 
remove all possibilities of autopilot manipulation.  

• The last scenario “Paralysation of the transport system” require high-capacity 
attackers and attempts of such attacks will therefore probably be rare. To prevent 
all such attacks, however, will probably be impossible. 
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5.6.6 Assessment of pure risk 
 
The assessments of pure risk are based on the asset identification, threat assessment 
and vulnerability assessements. For each scenario, we ask: 

1. Is it plausible that there are people who are motivated to conduct such 
cyberattacks? 

2. Is it plausible that anyone motivated to conduct such an attack also has capacity 
to implement it? 

3. What is the consequences of the scenario and how does it influence the assets? 
 
• Playful teenagers 
 
Remotely controlled vehicles are a popular toy and it seems plausible that many people 
would want to use autonomous vehicles as a toy to play with. It is also plausible that 
people without rightful access to a vehicle will be motivated to try to gain access to it, 
since car thefts for the purpose of joyriding is already common. With access to the 
vehicle owner’s home, it might also be possible to gain control over the vehicle without 
much technical expertise.  
 
In this scenario, two assets are damaged: the child and the vehicle. Another possible 
consequence is that people start to fear autonomous vehicles and therefore do not let 
their children go out and play.  
 
In summary, it might be difficult to stop all attempts at gaining control over vehicles 
without rightful access, but it should be possible to limit the consequences; i.e. killings 
and resulting fear.  
 
• Kidnapping for ransom 
 
Many people may be motivated to obtain private data about mobility patterns, including 
criminals planning to commit a crime against a person or property. The developers, 
furthermore, lack sufficient incentives to prioritise protecting against such unrightful 
access to private data.  
 
Kidnapping for ransom can be an attractive way of obtaining money for unscrupulous 
criminals if they think it is possible to get away without being caught. If autonomous and 
connected vehicles make it easier avoid being caught during and after a kidnapping 
attempt, the prevalence of such kidnappings will probably increase. Since it can be 
difficult to protect the control and locking systems from hacking, this might indeed 
happen.  
 
In the kidnapping scenario, only the ten-year-old child is under physical threat. However, 
both the child and the parents (and maybe other relations involved) experience trauma. 
After the public is made aware about the kidnapping, people that perceive themselves as 
attractive targets for such crimes might start avoiding autonomous vehicles and instead 
choose to travel by older, non-autonomous vehicles. 
 
In summary, autonomous and connected vehicles can enable organized criminals to more 
easily conduct successful kidnappings for ransoms. In addition to causing trauma among 
the directly affected, such kidnappings could make large groups of people avoid using 
them.  
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• Domestic abuse 
 
There are no reliable prevalence data on domestic abuse but the Crime Survey of 
England and Wales estimates that 21% of people aged 16 to 59 years in England and 
Wales have experienced some form of domestic abuse since the age of 16 years (Office 
for National Statistics, 2018). Use of modern technology when conducting domestic 
abuse is not a new phenomenon; for years, a subset of abusive partners with technical 
knowledge have placed spyware on computers or mobile devices, stolen passwords, and 
generally kept tabs on their other half (Boyd, 2018). Hence, it is very plausible that 
domestic abusers with the right technical capability may choose to use autonomous 
vehicles as a tool for terrorising victims. 
 
The physical threat to the ex-lover is limited, but the experience is traumatic. The news 
coverage of the incident reduces the confidence in autonomous vehicles, resulting in less 
use of the transport system and more use of older and less environmentally friendly 
vehicles. 
 
In summary, domestic abuse is very common, but only some domestic abusers have the 
technical knowledge needed for hacking an autonomous vehicle. Access to the victim’s 
home may, however, help a would-be hacker to obtain the necessary knowledge for 
conducting a cyberattack. Hence, as well as investing in security to protect the control, 
locking and heating systems, measures that support vehicle owners in protecting “inside 
information” about their vehicle might reduce cyberattacks relying on such inside 
information. 
 
• Autopilot manipulation 
 
Environmental groups engage in a mixture of political methods and activities, everything 
from confrontation and violence to more conventional styles of political persuasion 
(Dalton, Recchia and Rohrschneider, 2003). In many cases where more conventional 
styles of political persuasion fail, such groups may choose to conduct more irregular 
protests. Hence, it seems plausible that some environmental groups could conduct a 
campaign like the one described above.  
 
In this scenario, many people suffer from minor injuries and a few people suffer from 
serious injuries. A couple of the seriously injured passengers never completely recover. 
Many vehicles are damaged. The incident also causes reduced confidence in autonomous 
vehicles, resulting in less use of the transport system and more use of older and less 
environmentally friendly vehicles. 
 
In summary, political organisations sometimes choose to conduct irregular protests. 
Some of these organisations might choose to conduct protests by changing the physical 
environment to manipulate the autopilot of autonomous vehicles. Such an attack will only 
require limited technical knowledge. It is uncertain whether it is possible to create 
autopilots without vulnerabilities that can exploited in such an attack. 
  
• Paralysation of transport system 
 
Sometimes countries have outstanding issues that they experience as so salient that 
they prefer to go to open war. Conducting a cyberattack can be easier and less risky than 
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military action. Cyberattacks can be an especially convenient alternative when the 
countries in question is located far from each other.  
 
The sudden paralysation of the transport system causes many minor traffic accidents 
with resulting vehicle damage and personal injuries. The consequences of the continued 
blocking of traffic are more serious. Trade flows are disrupted, causing damage to 
property and obstructed delivery of time-critical goods. Emergency vehicles are either 
delayed or not able to arrive at all, causing fires to develop further and people not being 
rescued in time. 
 
In summary, the scenario on paralysation of the transport system is plausible. States can 
conduct such cyberattacks as an attractive alternative to military action. Prioritising the 
protection of update servers from such attacks will make it less probable that hackers 
succeeds in attacking, but will not stop the most determined high-capacity attackers.  
 
5.6.7 Risk situation 
 
In this analysis, we have included five scenarios; “Playful teenagers”, “Kidnapping for 
ransom”, “Domestic abuse”, “Autopilot manipulation”, and “Paralysation of the transport 
system”. Because of inherent vulnerabilities in connected and autonomous vehicles, it 
might be difficult to prevent all such hacker attacks as described in the scenarios. The 
two scenarios “Playful teenagers” and “Autopilot manipulation” can be conducted by 
people with little technical knowledge and limited resources. The scenarios “Kidnapping 
for ransom” and “Domestic abuse” require hackers with more technical knowledge. Only 
high-capacity actors, such as states and state-sponsored groups, will be able to conduct 
the attacks described in “Paralysation of the transport system”.  
 
Since it is not possible to prevent all hacker attacks, it is necessary to implement 
measures that reduce the consequences of the scenarios. Such measures include 1) kill 
switches that make it possible to turn off vehicle automation manually and thus override 
the autopilot (Consumer Watchdog, 2019)( “Kidnapping for ransom” and “Domestic 
abuse”), 2) make the vehicle possible to move by four healthy adults when automation is 
turned off (“Paralysation of the transport system”), 3) protection of the occupants in 
traffic accidents (“Autopilot manipulation”), and 4) detection of installed that may cause 
accidents (“Playful teenagers”).  
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5.6.8 Comparison of risk picture and security objectives 
 
Below we discuss whether we believe the risk picture as described above will fulfill the 
security objectives as described in section 5.6.2. 

1. The first incident-specific objective was that no cyberattack should cause more 
fatalities and seriously injured road users as defined by the first general security 
objective per year:  

 The first general objective was an absolute reduction in the number of 
fatalities and serious injuries compared to the current situation, and a 
reduction in the risk of being killed or seriously injured per kilometre 
travelled. 

 It seems improbable that any of the scenarios above should result in more 
fatalities and seriously injured road users than currently occur annually in 
traffic. 

2. The second incident-specific objective is that no cyberattack should result in 
larger economic costs as defined by the second general security objective per 
year. 

 The second objective is that cyberattacks should not incur larger costs on 
society than the efficiency gains achieved because of the introduction of 
connected and autonomous vehicles. 

 It seems improbable that any of the scenarios above would involve larger 
costs on society than the cost savings produced by CATS, thus eliminating 
these gains.  

3. The third incident-specific objective is that no cyberattack should cause more than 
24 hours of downtime of the transport system. 

 If connected and autonomous vehicles all have a kill switch and most of 
the vehicles are movable by four healthy adults, it seems improbable that 
any cyberattack could cause more than 24 hours of downtime of the 
transport system. 

4. The fourth incident-specific objective is that no cyberattack should delay 
emergency missions such that people die, fires develop further and conflict 
situations escalate into violence because of the delay. 

 If connected and autonomous vehicles all have a kill switch and most of 
the vehicles are movable by four healthy adults, the fourth incident-
specific objective might be obtainable. 

5. The fifth incident-specific objective is that 7 days after a cyberattack at least 90% 
of the population should be willing to use autonomous vehicles again.  

 The achievement of this objective depends on the frequency of incidents 
(as described in the scenarios), the consequences of the incidents and the 
media coverage of the incidents. The terrorist attacks on September 11, 
2001, depressed air travel far longer than 7 days. 

6. The sixth incident-specific objective is that 21 days after a cyberattack at least 
80% of the population should report that they feel safe as passengers of 
autonomous vehicles. 

 The achievement of this objective depends on the frequency of incidents 
(as described in the scenarios), the consequences of the incidents and the 
media coverage of the incidents. 

In summary, objectives 1 and 2 seem realistic and objectives 3 and 4 are obtainable if 
kill switches are installed and vehicles are easily movable by healthy adults. The 
achievement of objectives 5 and 6 depends both on the frequency and seriousness of all 
attacks and the resulting media coverage of these attacks. 
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6 Library of functional 
relationships with uncertainties 

 

The objective of this chapter is to summarise and assess the uncertainty of the 
functional relationships between the market penetration rate of automated 
vehicles and impacts on mobility, safety and the environment estimated in 
chapter 4 and 5. All relationships are subject to a ceteris paribus clause, 
meaning that they apply when everything else is equal. Most of the functional 
relationships show primary impacts. It is currently possible to describe only a 
few secondary impacts in terms of functional relationships. 

 
The objective of this chapter is to summarise the functional relationships between the 
market penetration rate of automated vehicles and the impacts of these vehicles. Three 
main types of impacts are included: mobility, safety and environment. Most relationships 
describe primary impacts. They represent a formal interpretation of the results, mainly of 
traffic simulation studies, presented and discussed in chapter 4. All impacts are 
uncertain. To indicate uncertainty, the range of findings reported in the literature is used 
as frame of reference. This approach is, however, only feasible when more than one 
study dealing with a certain impact has been reported. 
 

6.1 Mobility impacts 
All functions have been calibrated so that their value equals 100 at 0% market 
penetration rate of automated vehicles. Market penetration is stated as a percentage, in 
steps of 10 (10, 20, …, 90, 100). Maximum impact is reached at 100% market 
penetration. In all tables, the following notation is used: 
 
e = the exponential function, i.e. the base of natural logarithms (2.71828) raised to the 
power of a term in parenthesis 
p% = percent market penetration of automated vehicles; stated as a whole number (10, 
20, etc.) 
p%2 = the squared value of market penetration of automated vehicles 
Max (100%) = the value of the impact (dependent variable) at 100% market penetration 
of automated vehicles 
 
As an example, the first impact listed in Table 10 is change in lane capacity on 
motorways. This impact is modelled by the following function: 
 
Change in lane capacity = 0.0135 ∙  𝑥𝑥2 − 0.1505 ∙ 𝑥𝑥 + 100 
 
This function results in a value of 220 for lane capacity at 100% market penetration, i.e. 
an increase of 120 percent. Uncertainty is stated in the form of lower and upper bounds 
for impacts. In general, lower limit refers to the smallest impact, upper limit to the 
largest impact. 
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Table 10 Functional relationships describing impacts of CATS on mobility. 
 

Impact Best estimate Lower limit Upper limit 

 Functions based on studies quoted in chapter 4 

Road (lane) capacity 0.0135 ∙ p%2 – 0.1505 ∙ 
p% + 100 
Max  = 220 

100 ∙ e(p% ∙ 0.003365) 
Max  = 140 

0.028 ∙ p%2 – 0.1505 ∙ 
p% + 100  
Max = 375 

Junction capacity 
(urban road capacity) 

100 ∙ e(p% ∙ 0.003) 
Max = 135.0 

100 + 0.2564 ∙ p% 
Max = 125.6 

100 ∙ e(p% ∙ 0.0036) 
Max = 143.3 

Delays on motorways 0.0011 ∙ p%2 – 0.4164 ∙ 
p% + 100 

Max = 69.4 

0.0011 ∙ p%2 – 0.3 ∙ p% 
+ 100 

Max = 80.0 

0.0011 ∙ p%2 – 0.51 ∙ p% 
+ 100 

Max = 60.0 

Delays in roundabouts 0.0015 ∙ p%2 – 0.5 ∙ p% 
+ 100 

Max = 65.0 

0.0009 ∙ p%2 – 0.121 ∙ 
p% + 100 

Max = 78.9 

0.0039 ∙ p%2 – 0.8662 ∙ 
p% + 100 

Max = 52.4 

Delays in signalised 
junctions 

0.001 ∙ p%2 – 0.2 ∙ p% + 
100 

Max = 90.0 

0.0005 ∙ p%2 – 0.1035 ∙ 
p% + 100 

Max = 94.7 

0.0021 ∙ p%2 – 0.3592 ∙ 
p% + 100 

Max = 85.1 

Travel time on 
motorways 

100 ∙ e(p% ∙ -0.001) 
Max = 90.5 

100 ∙ e(p% ∙ -0.00062) 
Max = 94.0 

100 ∙ e(p% ∙ -0.0023) 
Max = 79.5 

 Functions derived from the quoted functions 

Delays in junctions 
(mean of signalised 
and roundabouts) 

0.0012 ∙ p%2 – 0.3444 ∙ 
p% + 100 

Max = 77.6 

-0.00028 ∙ p%2 – 0.108 ∙ 
p% + 100 

Max = 86.4 

0.0028 ∙ p%2 – 0.594 ∙ 
p% + 100 

Max = 68.6 

Travel time in cities 100 ∙ e(p% ∙ -0.00062) 
Max = 94.0 

100 ∙ e(p% ∙ -0.0003) 
Max = 97.0 

100 ∙ e(p% ∙ -0.00128) 
Max = 88.0 

 
 
The upper and lower limit functions have been determined so that they encompass all or 
most of the data points in primary studies. Figure 28 gives an example of this. It shows 
the best estimated function and upper and lower limit functions for lane capacity on 
motorways. It is seen that the upper and lower function diverge more and more as 100% 
market penetration is approached. This means that uncertainty increases as market 
penetration approaches 100 percent. This is regarded as reasonable. 
 
It is seen that most data points are located inside the lower and upper limit functions. 
Using more complex functional forms for the upper and lower limit functions might have 
brought the data points located outside the functions inside these functions, but the 
fitted upper and lower limit functions were judged as sufficiently accurate to justify 
parsimony and simplicity rather than ad hoc complexity designed to bring the few data 
points that are outside the upper and lower limit curves inside these curves. 
 
In addition to the functional relationships estimated on the basis of published studies, 
Table 10 contains a couple of functions derived from the functions quoted in Chapter 4. 
The first of these functions refers to delays in junctions. It is a simple average of the 
functions for signalised junctions and roundabouts. Both types of junctions are found in 
cities and their exact mix varies from city to city. Without specific data, a simple average 
was chosen. 
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Figure 28: Functions indicating increase in lane capacity and uncertainty of the increase 

 
The other function refers to travel time saving in cities. For motorways, it can be 
observed that delays, according to the best estimate, are reduced by a little more than 
30% at 100% market penetration of automated vehicles. However, travel time on 
motorways is estimated to be reduced by only 9.5% at 100% market penetration of 
automated vehicles. The difference between these estimates can be explained in terms of 
congestion. Delays are caused by congestion, but not all of traffic is congested. When 
traffic flows freely, there are no delays. Since only about 25-30% of traffic is congested, 
the mean gain in travel time is considerably smaller than the reduction of congestion 
delays. 
 
It is reasonable to assume that the delays in junctions are a characteristic of urban 
traffic, as the density of junctions is much higher in cities than in rural areas. The best 
estimate of the mean reduction of delay in junction, according to the average function 
fitted as an average of signalised junctions and roundabouts, is 22.4% reduction at 
100% market penetration of automated vehicles. By analogy to the results for 
motorways, it will be assumed that travel time gain in urban areas will be about 25-30% 
of the reduction in delays, i.e. about 6% at 100% market penetration of automated 
vehicles. Lower limit is 3% saving in travel time; upper limit is 12% saving in travel time. 
See the functions in the bottom row of Table 10. 
 
In general, there is considerable uncertainty. As an example, the upper limit value for 
increase in lane capacity at 100% market penetration is an increase of 275%, whereas 
the lower limit is an increase of only 40%. 
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6.2 Safety impacts 
Table 11 presents functions describing the road safety impacts of connected and 
automated vehicles. 
 

Table 11: Functional relationships describing impacts of CATS on safety. 
 

Impact Best estimate Lower limit Upper limit 

 Functions based on studies quoted in chapter 4 

Rearend and lane 
change collisions 
(motorways) 

0.0035 ∙ p%2 -1.2868 ∙ 
p% + 100 
Max = 6.3 

0.005 ∙ p%2 - 1.17 ∙ p% 
+ 100 

Max = 33.0 

0.0035 ∙ p%2 - 1.34 ∙ p% 
+ 100 

Max = 1.0 

Accidents in 
signalised junctions 

100 ∙ e(p% ∙ -0.007) 
Max = 49.7 

100 ∙ e(p% ∙ -0.0011) 
Max = 89.6 

100 ∙ e(p% ∙ -0.02) 
Max = 13.5 

Accidents in priority 
junctions 

-0.001 ∙ p%2 - 0.12 ∙ p% 
+ 100 

Max = 78.0 

-0.0054 ∙ p%2 + 0.412 ∙ 
p% + 100 

Max = 87.2 

-0.0035 ∙ p%2 + 0.042 ∙ 
p% + 100 

Max = 69.2 

Accidents in 
roundabouts (single 
study only) 

-0.009 ∙ p%2 + 0.3022 ∙ 
p% + 100 

Max = 40.2 

-0.0088 ∙ p%2 + 0.32 ∙ 
p% + 100 

Max = 44.0 

-0.0092 ∙ p%2 + 0.29 ∙ 
p% + 100 

Max = 37.0 

Cyclist and pedestrian 
accidents  

0.0059 ∙ p%2 – 1.1562 ∙ 
p% + 100 

Max = 43.4 

0.0059 ∙ p%2 – 1.22 ∙ p% 
+ 100 

Max = 37.0 

0.0059 ∙ p%2 – 1.12 ∙ p% 
+ 100 

Max = 47.0 

 Functions derived from the quoted functions 

Urban junctions 
(mean of signals, 
priority, roundabouts) 

-0.0028 ∙ p%2 - 0.1642 ∙ 
p% + 100 

Max = 55.6 

-0.0048 ∙ p%2 + 0.1974 ∙ 
p% + 100 

Max = 71.7 

-0.0041 ∙ p%2 - 0.4213 ∙ 
p% + 100 

Max = 43.9 

 
The functions for roundabouts are based on the study by Morando et al. (2018). The 
study provided confidence intervals. These were applied to indicate uncertainty. It should 
be noted that this resulted in a narrow range of outcomes, which most certainly 
underestimates uncertainty, given the fact that when multiple studies are available, their 
results tend to differ considerably. 
 
A mean function for junctions was estimated based on the functions for signalised 
junctions, priority junctions and roundabouts. Each type of junction had a weight of 1/3. 
 

6.3 Fuel consumption 
Table 12 shows the estimated function for fuel consumption and an estimate of its 
uncertainty. 
 
Presumably, the studies of fuel consumption assume that vehicles are still operated by 
internal combustion engines running on fossil fuel. As an approximation, it may be 
assumed that emissions of local pollution per vehicle are proportional to fuel 
consumption. CO2 emissions are also proportional to fuel consumption. 
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Table 12: Functional relationships describing impacts of CATS on fuel consumption. 
 

Impact Best estimate Lower limit Upper limit 

 Functions based on studies quoted in chapter 4 

Fuel consumption 0.0009 ∙ p%2 – 0.3948 ∙ 
p% + 100 

Max = 69.5 

0.0009 ∙ p%2 – 0.75 ∙ p% 
+ 100 

Max = 34.0 

0.004 ∙ p%2 – 0.68 ∙ p% 
+ 100 

Max = 72.0 

 
If vehicles become electric, emissions become zero. It is important to note that this does 
not mean that a zero emission vehicle is a zero pollution vehicle. An electric vehicle will 
produce local air pollution by producing microparticles that are suspended in air and can 
be inhaled. These particles are produced by the friction between tyres and road surface 
as well as by the wear of the mechanical parts of the braking system.  
 
In a study of the health impacts of local transport in Warsaw, Poland (Tainio 2015), 
microparticles had by far the largest health impact of any component of air pollution, 
producing health losses that were considerably larger than those associated with 
pollutants that have traditionally been attributed to fossil fuels, like NOx or SO2. 
 

6.4 Other impacts and feedback impacts 
It is not known when or how fast connected and automated vehicles will penetrate the 
market. However, given the fact that a passenger car today has a service life of some 
15-20 years (the mean age at scrapping varies between countries; in countries where 
cars are comparatively expensive, like Denmark or Norway, people keep them longer 
than in countries where cars are cheaper), it is not unreasonable to assume that full 
market penetration may take some 15-20 years. 
 
Inspired by the logistic functions developed by Rosen and Sander (2009) to model the 
probability of death as a function of impact speed in pedestrian accidents, similar logistic 
functions have been developed for the market penetration of automated cars. The 
functions are shown in Table 13 and Figure 29. 
 

Table 13: Functional relationships describing market penetration of automated vehicles. 
 

Impact Best estimate Lower limit Upper limit 

 Market penetration rate 

Market penetration by 
year (years = 0, 1, 2, 
etc.) 

100/(1 + e(6.9 – 0.9 ∙ 
year)) 

100 % in 17 years 

100/(1 + e(8.5 – 0.6 ∙ 
year)) 

100 % in 27 years 

100/(1 + e(5.3 – 1.2 ∙ 
year)) 

100 % in 11 years 

 
Full market penetration takes 17 years according to the best estimate, 27 years as a 
pessimistic alternative and 11 years as an optimistic alternative. 
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Figure 29: Market penetration curves for automated vehicles 

 
The discussion of feedback impacts in Chapter 5 concluded that travel demand induced 
by increased road capacity is sufficiently well known to be estimated. This impact is also 
important, as all other impacts, like savings in travel time or accidents, depend strongly 
on changes in traffic volume. It was concluded that the best estimate of induced travel 
demand is 75% of the increase in road capacity, with a lower bound of 50% and an 
upper bound of 100%. Table 10 presented dose-response curves for lane capacity on 
motorways and junction capacity, with associated upper and lower limits. Based on these 
functions, Table 14 presents functions for induced travel demand. Given that there is 
uncertainty both about the increase in road capacity and the amount of induced travel, 
the functions have been defined as follows: 
 

1. The best estimate is a function in which travel demand increases by 75% of the 
best estimate of the increase in road capacity. 

2. The lower limit is a function in which travel demand increases by 50% of the 
lower limit of the increase in road capacity (there is logic in this: a smaller 
increase in road capacity may generate less new traffic than a large increase in 
road capacity). 

3. The upper limit is a function in which the increase in travel demand equals the 
upper limit of the increase in road capacity. 

 
It is seen that the range of induced travel demand on motorways is between 20% and 
375%. In cities, the corresponding range is between 13% and 43%. 
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Table 14: Functional relationships describing induced travel demand. 
 

Impact Best estimate Lower limit Upper limit 

 Functions based on studies quoted in chapter 5 

Travel demand on 
motorways 

0.0105 ∙ p%2 – 0.1505 ∙ 
p% + 100 
Max  = 190 

100 ∙ e(p% ∙ 0.00182) 
Max = 120 

0.028 ∙ p%2 – 0.1505 ∙ 
p% + 100  
Max = 375 

Travel demand in 
cities (junctions) 

100 ∙ e(p% ∙ 0.0023) 
Max = 126.2 

100 ∙ e(p% ∙ 0.00121 
Max = 112.9 

100 ∙ e(p% ∙ 0.0036) 
Max = 143.3 

 
A final potential impact to be discussed is behavioural adaptation to automated vehicles 
among drivers of non-automated vehicles. Only one driving simulator study has found 
this: drivers of manual vehicles copied the shorter headways of platooned automated 
vehicles. The likelihood and magnitude of this copying behavior will probably depend on 
the market penetration of automated vehicles. At low penetration, manual vehicles will 
dominate traffic and there will be few platoons of automated vehicles benefitting from 
short headways. As automated vehicles become more common, platoons characterised 
by short headways will be observed more often. Finally, as automated vehicles dominate, 
copying their shorter headways may decline again, as the last drivers to adopt 
automated vehicles may be those who are least interested in the benefits offered by the 
technology and may prefer a defensive driving style not giving high priority to short 
headways. 
 
A function consistent with these hypotheses will be bell-shaped, rising to a maximum and 
then declining again. Adding such a function to the original function results in the new 
functions shown in Table 15. It is recognised that the function representing behavioural 
adaptation is somewhat speculative. 
 

Table 15: Functional relationships describing changes in conflicts on motorways – allowing for 
behavioural adaptation. 
 

Impact Best estimate Lower limit Upper limit 

 Changes allowing for behavioural adaptation 

Rearend and lane 
change conflicts 

-0.0001p%3 + 
0.0129p%2 – 1.227p% + 

100 
Max = 6.3 

-0.0001p%3 + 
0.0135p%2 – 1.02p% + 

100 
Max = 33.0 

-0.0001p%3 + 
0.0135p%2 – 1.34p% + 

100 
Max = 1.0 
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7 Methods for predicting impacts 

 

The objective of this chapter is to show how to use different methods for 
predicting impacts of connected and automated vehicles. The application of 
each method consists of several steps. The first step is to define a use case or a 
type of traffic environment for which impacts are to be predicted. The second 
step is to decide which impacts are to be included in analysis. The third step is 
to estimate primary impacts. To this end, the functional relationships described 
in Chapter 6 can be applied. The fourth step is to estimate rebound effects, 
including behavioural adaptation. The fifth step is to estimate net impacts when 
primary impacts have been corrected for rebound effects. The sixth step is to 
assess uncertainty and develop best and worst case scenarios. Examples of how 
to use the methods are given. 

 

7.1 Defining use cases or systems for impact analysis 
 
Table 16 summarises the use cases that have been proposed in Levitate. The body of the 
Table lists examples of technologies associated with each scenario. Thus, for automated 
urban transport, fully automated vehicles that are able to operate in an urban traffic 
environment are needed. The vehicles will have technology permitting connectivity and 
can be integrated into mobility as a service. 
 
The passenger car use case will comprise automation in all traffic environments. The 
studies reviewed for this use case deal with automation levels 4 or 5, or do not specify 
the automation level.  
 
The freight transport use case also comprises all traffic environments. Estimates of some 
impacts are available for some of the technologies listed. For other technologies, the 
review presented in Chapter 4 has not identified any estimates of impacts. It should be 
stressed, however, that the review presented in Chapter 4 looked for studies permitting 
the estimation of dose-response curves for as many potential impacts of connected and 
automated vehicles as possible, and not for studies of the impacts of specific 
technologies. Additional literature surveys made as part of work packages 5, 6 and 7 will 
look for studies of impacts of the specific technologies listed in Table . 
 
For all use cases, a distinction should be made between three types of traffic 
environment: 
 

1. An urban traffic environment 
2. A rural traffic environment 
3. Motorways 

 
The potential impacts of vehicle automation vary with respect to the type of traffic 
environment. It is therefore necessary to develop separate estimates of potential impacts 
for each traffic environment. 
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Table 16: Summary of use cases proposed in Levitate. 
 
Use-case Sub-use cases  

Passenger 
cars 

Road use pricing: 
• Empty km pricing 
• Static toll on non-automated vehicles 
• Static toll on all vehicles 
• Dynamic toll on non-automated vehicles 
• Dynamic toll on all vehicles 

Automated ride sharing  

Reduction of parking space: 
• Replace with public space 
• Replace with driving lanes 
• Replace with short-term parking 

  
Provision of economic incentives for buying Avs 

Provision of dedicated lanes for AVs on urban highways 
   
Highway platooning  

Use-case Sub-use cases  

Urban 
transport 

Automated shuttles: 
• Point to point shuttles 
• Anywhere to anywhere shuttles 
• Last mile shuttles 

  
Use-case Sub-use cases  

Freight 
transport 

Automated urban delivery  

Local freight consolidation  

Hub to hub automated transfer  

Highway platooning  

 
 

7.2 Defining relevant impacts 
A total of 33 potential impacts of connected and automated vehicles have been identified. 
Not all of these impacts will be relevant for all use cases. To identify the most relevant 
impacts, the policy objectives set by stakeholders, such as city governments, public 
transport operators, car manufacturers or freight transport operators will be used as a 
frame of reference. All stakeholders primarily want to know whether they have realised 
their policy goals or not. Any policy may, obviously, have unintended side-effects in 
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addition to its declared objectives. If there is knowledge permitting such additional 
impacts to be identified, they should be included in an impact assessment. 
 
A typical example of un-intended impacts is rebound impacts, or behavioural adaptation 
to technological changes. If, as is widely assumed in the literature, automated transport 
systems will reduce the generalised costs of travel, it is highly likely that this will induce 
more travel. The reduced cost of travel may not just cause more trips to be made, but 
also longer trips and, in the long term, urban sprawl. These impacts would normally be 
regarded as undesirable by, for example, a city government. Yet, including them is 
important, as it is to some extent possible to take action to counteract the rebound 
impacts. One may, as an example, introduce road pricing as a form of tax to prevent 
transport from becoming cheaper. 
 
Estimates of impacts will therefore be developed both with and without inclusion of any 
effects of behavioural adaptation, in order to see how these impacts influence the total 
benefits of connected and automated vehicles. 
 
In this chapter, we will see how far one can get by applying the dose-response curves 
presented in Chapter 4, while recognising that the curves will not include all relevant 
impacts. Impacts not covered by the dose-response curves represent research needs, 
some of which may be covered by additional research made as part of Levitate. 
 
To illustrate the use of the dose-response curves to estimates impacts, it will be assumed 
that all cars are automated. It will be assumed that mopeds and motorcycles remain 
operated by a human driver. Cyclists and pedestrians will also remain non-automated 
(although, in principle, one could make it a requirement for cyclists and pedestrians to 
wear a communication device capable of communicating with automated vehicles; it will 
be assumed that no such requirement is made). 
 

7.3 Case illustration: Automation of all cars 
The replacement of human operated cars by fully automated cars at the highest level of 
automation represent the broadest scope of a use case or scenario for the introduction of 
connected and automated vehicles and may therefore be interpreted as an attempt to 
estimate the maximum potential impacts of connected and automated vehicles. As 
explained above, impacts will be estimated separately for urban, rural and motorway 
environments.  
 
7.3.1 Identifying accidents involving road users who will not be 

automated 
 
Mopeds, motorcycles, cyclists and pedestrians will not be automated. Although 
automation technology may prevent many accidents involving, for example, cars and 
cyclists, it will not prevent accidents involving only non-automated road users. Based on 
Norwegian accident statistics (each country would need to produce its own statistics), it 
can be estimated that injuries involving non-automated road users represent 7% of all 
injuries in urban areas, 4% in rural areas and 1% on motorways. These injuries will not 
be affected by automation technology and it is assumed that their number remains 
unchanged. Automation technology will therefore potentially influence 93% of injured 
road users in urban areas, 96% in rural areas and 99% on motorways. 
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7.3.2 Primary and net impacts on road capacity 
 
In the urban traffic environment, it will be assumed that road capacity depends on 
junction capacity. Estimates of potential changes in junction capacity are only available 
from a single study (Atkins 2016) and only for roundabouts and signalised junctions. It 
will be assumed that the function for roundabouts can also be applied for priority 
junctions. In chapter 6, a functional relationship for all junctions was developed as a 
mean of the relationships for signalised junctions and roundabouts. This functional 
relationship has been applied below in order to estimate the change in road capacity in 
urban areas associated with vehicle automation. 
 
The best estimates of the primary impact and net impact after adjusting for the rebound 
impact on junction capacity under these assumptions is: 
 
       Relative change in road capacity 
Market penetration of automated vehicles (X)  Primary impact Net impact 
0        100.0      100.0 
10        103.0      100.7 
20        106.2      101.3 
30        109.4      102.0 
40        112.7      102.7 
50        116.2      103.4 
60        119.7      104.1 
70        123.4      104.8 
80        127.1      105.5 
90        131.0      106.2 
100        135.0      106.9 
 
Current road capacity is given the value of 100. The numbers represent percentage 
changes. Without any growth in traffic volume, a maximum increase in road capacity of 
35% at 100% market penetration is predicted. It has been assumed, see the discussion 
in section 5.1, that 75% of added capacity will be consumed by induced travel. Increase 
in travel at 100% market penetration of automated vehicles will be 75% of 35%, or 
26.2%. It is assumed that impacts combine multiplicatively. Thus, the net impact at 
100% market penetration will be an increase of just 6.9% in road capacity (135.0/126.2 
= 106.9). It is thus seen that the assumptions made about behavioural adaptation to 
increased road capacity, in the form of an increased amount of travel, has a large 
influence on the results. 
 
7.3.3 Primary and net impacts on travel time 
 
A functional relationship describing changes in travel time, all else equal was estimated 
in Chapter 6. This functional relationship applied to mean travel time both in congested 
and uncongested conditions, i.e. mean travel time for a 24-hour period. Estimates are 
once again developed under the assumption of no change in travel demand and under 
the assumption that increased travel will reduce the increase in road capacity by 75%. 
Even after increase in travel demand, a net increase in road capacity remains. The 
studies reviewed in Chapter 6, suggest that the saving in mean travel time is a function 
of the increase in road capacity as follows: 
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Saving (%) in mean travel time = 0.0006X2 – 0.1786X – 0.089 
 
Applying this function (omitting the constant term) to the net increase in road capacity 
listed above, the results are: 
 
       Relative change in travel time 
Market penetration of automated vehicles (X)  Primary impact Net impact 
0        100.0      100.0 
10        99.4      99.3 
20        98.8      98.6 
30        98.2      97.8 
40        97.6      97.1 
50        96.9      96.3 
60        96.3      95.6 
70        95.8      95.0 
80        95.2      94.2 
90        94.6      93.5 
100        94.0      92.8 
 
Current travel time is given the value 100. The other entries show travel time relative to 
this value. Given the net increase in road capacity, a net reduction in travel time of about 
7% is estimated. In this case, the net impact is a little larger than the primary impact. 
 
7.3.4 Primary and net impacts on fuel consumption and emissions 
 
The primary impacts on fuel consumption and emissions were estimated by applying the 
function developed in Chapter 6. 
 
     Relative change in fuel consumption and emissions 
Market penetration of automated vehicles (X)  Primary impact Net impact 
0        100.0      100.0 
10        96.1      98.4 
20        92.5      96.9 
30        89.0      95.4 
40        85.6      94.0 
50        82.5      92.7 
60        79.6      91.5 
70        76.8      90.4 
80        74.2      89.4 
90        71.8      88.6 
100        69.5      87.7 
 
Net impacts were estimated by multiplying primary impacts with the expected growth in 
traffic volume. It is seen that net impacts are smaller than primary impacts. 
 
7.3.5 Primary and net impacts on accidents 
 
Estimating impacts on safety is more complicated than estimating effects on capacity and 
travel time. There are three reasons for this: 
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1. There are different dose-response curves for different types of accident or 
different groups of road users. 

2. There is a category of accidents that will not be affected by vehicle automation, 
i.e. accidents involving vehicles and road users that will not be automated. 

3. To estimate net impact, one should adjust for the expected increase in traffic 
volume. 

 
A further source of complexity, is the incomplete reporting of injuries to cyclists and 
pedestrians in official road accident statistics. However, since official road accident 
statistics is by far the most commonly used source of data in road safety impact 
assessments, it will be used in the example developed below. In Chapter 6, a mean 
impact function for accidents in junctions was developed. This function will be applied to 
accidents in which occupants of motor vehicles are injured. Based on accident statistics 
for the city of Oslo – this must be customised to statistics for each city – the function for 
junction accidents has been given a weight of 0.6 and the function for cyclist and 
pedestrian accidents a weight of 0.4. The weighted mean curve applies to all accidents in 
urban areas. 7 percentage points were added to each data point of the weighted mean 
curve (except the data point for 0% market penetration) to account for the fact that 7 
percent of the current number of injuries are sustained by non-automated road users and 
will not be influenced by automation. These injuries are assumed to remain unchanged 
as the market penetration of automated vehicles increases. Finally, the dose-response 
curve was adjusted for expected increase in traffic volume. This was done by multiplying 
each data point by the expected growth in traffic. This assumes that the number of 
accidents is proportional to traffic volume. This is most likely not correct, but it is the 
simplest assumption that can be made. 
 
The results are shown below: 
 
Market penetration (%) Mean curve with 7% added 

to each entry 
Mean curve adjusted for 
traffic increase 

0 100.0 100.0 
10 101.5 103.8 
20 96.1 100.6 
30 90.8 97.4 
40 85.6 94.0 
50 80.7 90.6 
60 75.8 87.2 
70 71.1 83.7 
80 66.5 80.1 
90 62.0 76.5 
100 57.7 72.8 
 
It is seen that adjusting for an expected increase in traffic has a major impact on the size 
of the estimated changes in the number of accidents. At 100 % market penetration of 
CATS, the estimated accident reduction is about 42% with constant traffic volume but 
only about 27% if traffic increases in line with historic demand elasticities for road 
capacity. 
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7.3.6 Summary of estimated impacts for urban areas 
 
Table 17 summarises estimated net impacts of connected and automated vehicles in 
urban areas. 
 

Table 17: Summary of estimated net impacts of connected and automated vehicles in urban 
areas. Relative changes from a baseline 0% market penetration. 
 

Market 
penetration of 
automated 
vehicles (%) 

 
 
 

Traffic volume 

 
 
 

Road capacity 

 
 
 

Travel time 

 
 

Fuel 
consumption 

 
 

Number of 
accidents 

0 100.0 100.0 100.0 100.0 100.0 

10 102.4 100.7 99.3 98.4 103.8 

20 104.8 101.3 98.6 96.9 100.6 

30 107.2 102.0 97.8 95.4 97.4 

40 109.8 102.7 97.1 94.0 94.0 

50 112.4 103.4 96.3 92.7 90.6 

60 115.0 104.1 95.6 91.5 87.2 

70 117.7 104.8 95.0 90.4 83.7 

80 120.5 105.5 94.2 89.4 80.1 

90 123.3 106.2 93.5 88.6 76.5 

100 126.2 106.9 92.8 87.7 72.8 

 
The impacts it has been possible to estimate by applying the dose-response curves are 
limited to those occurring within the traffic system. The estimated impacts can, as an 
approximation, be assumed to be invariant with respect to whether individual mobility 
will remain dominant or a shift to shared mobility will occur. As noted in Chapter 4, if 
there is a shift to shared mobility, there will be fewer cars than today, but each car will 
be operated for a longer period, implying that the number of cars moving on roads may 
not change very much from today. 
 
The impacts presented in Table 17 are net impacts. The difference between primary 
impacts and net impacts is that estimates of primary impacts assume unchanged traffic 
volume, whereas estimates of net impacts include the growth in traffic volume. Since 
automated vehicles are widely believed to lower the costs of travel and transport, and 
since additions to road capacity tend to be filled up by induced traffic, it has been 
assumed that there will be traffic growth. According to the conventional approach to 
cost-benefit analysis, a growth in traffic is a benefit; it increases the consumer surplus of 
travel (more travel is served at lower cost). It does, however reduce the benefits in 
terms of total fuel consumption and total number of accidents compared to a situation 
with no traffic growth. There is less reduction in fuel consumption and less reduction in 
the number of accidents if traffic increases than if it does not. It is, a priori, not clear 
whether there will be any difference in total benefits between estimates based on 
primary impacts and estimates based on net impacts. From a theoretical point of view, 
basing cost-benefit analyses on net impacts would be the most correct approach. 
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Since the generalised costs of travel are normally taken to include the valuation of travel 
time, it might be double counting if the gain in travel time listed in Table 17 was to be 
added as an additional benefit. The costs of accidents are, however, to some extent 
external, i.e. not included in the generalised costs of travel and might therefore be added 
as an additional benefit. 
 
The estimated net impacts at 100% market penetration of connected and automated 
vehicles are quite modest. According to the estimates, there will be a modest net 
increase in road capacity and a modest reduction of travel time. There will be a small 
reduction in fuel consumption and a somewhat larger reduction in the number of 
accidents. The estimated reduction in the number of accidents is not larger than what 
one might accomplish by means of a combined use of traditional road safety measures, 
such as traffic calming, reducing speed limits and converting junctions to roundabouts. 
 
All estimates are uncertain. Before discussing uncertainty, an example of estimated 
impacts of connected and automated vehicles in a motorway environment will be given. 
 
7.3.7 Summary of estimated impacts for motorways 
 
Table 18 summarises estimated impacts of vehicle automation for motorway operations. 
The increase in road capacity, as shown in Figure 7, was first estimated. It was assumed 
that 75% of the increase in road capacity will be consumed by increased traffic. For 
travel time savings, the function shown in Figure 12 was used. It was assumed that 
traffic growth would eliminate 75% of the saving in travel time. For safety impacts, the 
functional relationship shown in Table 18 was applied. It was adjusted to account for the 
fact that 1% of accidents on motorways will involve non-automated road users or modes. 
It was also adjusted for expected growth in traffic. 
 
It is seen that traffic is expected to grow by about 90% at 100 % market penetration of 
automated vehicles. There will nevertheless be a net increase in road capacity of about 
16%. Travel time savings, after adjusting for traffic growth, will be about 15% at 100% 
market penetration. Fuel consumption is expected to increase a little; a result consistent 
with Chen et al (2019). A large reduction of the number of accidents is predicted. This is 
plausible, as most accidents on motorway are more easily prevented by automation 
technology than accidents in more complex traffic environments. On motorways, there 
are no pedestrians or cyclists, no slow-moving motor vehicles, no sharp curves, no at-
grade junctions, and, in general a high standard of maintenance for traffic control 
devices and the road surface. Sensor technology is well capable of detecting nearby 
vehicles when lane changes take place and well capable of intelligent cruise control in 
vehicle following situations. Estimated effects on accidents have been adjusted for traffic 
growth and, admittedly somewhat speculatively, for behavioural adaptation among non-
automated vehicles in terms of shorter headways. Effects on accidents are highly non-
linear and large reductions are only seen when the market share of automated vehicles 
reaches 70% or more. 
 
Effects on rural roads are likely to be somewhere in-between those estimated for urban 
roads and those estimated for motorways. 
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Table 18: Summary of estimated net impacts of connected and automated vehicles on 
motorways. Relative changes from a baseline 0% market penetration. 
 

Market 
penetration of 
automated 
vehicles (%) 

 
 
 

Traffic volume 

 
 
 

Road capacity 

 
 
 

Travel time 

 
 

Fuel 
consumption 

 
 

Number of 
accidents 

0 100.0 100.0 100.0 100.0 100.0 

10 99.5 100.3 98.7 95.7 89.5 

20 101.2 101.2 97.3 93.6 81.8 

30 104.9 102.6 95.8 93.4 76.7 

40 110.8 104.3 94.2 94.9 73.2 

50 118.7 106.3 92.7 98.0 70.3 

60 128.8 108.4 91.2 102.4 67.0 

70 140.9 110.4 89.6 108.2 61.6 

80 155.2 112.4 88.1 115.1 52.5 

90 171.5 114.2 86.7 123.1 37.3 

100 190.0 115.8 85.3 132.1 13.0 

 
 

7.4 Sensitivity analysis: worst and best outcomes 
All impacts of connected and automated vehicles are uncertain. To show uncertainty, 
estimates of impacts have been developed based on the lower and upper limits of 
outcomes as specified in the functional relationships in Chapter 6. In general, the lower 
limit of an impact shows the smallest impact and the upper limit of an impact shows the 
largest impact. The worst case is that all impacts take on their smallest values, the best 
case is that they take on the largest values. However, as impacts go in opposite 
directions, to show the range of possible outcomes, it is necessary to consider the 
direction of impacts. The worst outcome will therefore be defined as follows: 
 

1. There is full compensation for the maximum increase in road capacity, i.e. no net 
increase in road capacity; any increase is fully filled up by increased traffic 
volume, combined with: 

2. There are no changes in travel time, as the ratio of volume to capacity is 
unchanged, i.e. there is no change in congestion (Kucharski and Drabicki 2017), 

3. The lowest estimate for reduction of fuel consumption, 
4. The lowest estimate for reduction of the number of accidents. 

 
Estimated impacts for the worst and best outcome will be illustrated for the urban case. 
Table 19 shows the estimated worst outcome for urban areas. There is considerable 
traffic growth; no net increase in road capacity and hence no change in travel time 
(congestion will remain at the same level as before). There is a temporary reduction in 
fuel consumption; however, traffic growth ultimately eliminates this reduction. A small 
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reduction of the number of accidents has been estimated when the market penetration of 
automated vehicles reaches 80% or more. 
 

Table 19: Worst case outcome for urban areas. Relative changes from a baseline 0 % market 
penetration. 
 

Market 
penetration of 
automated 
vehicles (%) 

 
 
 

Traffic volume 

 
 
 

Road capacity 

 
 
 

Travel time 

 
 

Fuel 
consumption 

 
 

Number of 
accidents 

0 100.0 100.0 100.0 100.0 100.0 

10 103.7 100.0 100.0 97.0 107.0 

20 107.5 100.0 100.0 94.6 106.8 

30 111.4 100.0 100.0 92.7 106.3 

40 115.5 100.0 100.0 91.5 105.5 

50 119.7 100.0 100.0 91.0 104.4 

60 124.1 100.0 100.0 91.3 103.0 

70 128.7 100.0 100.0 92.6 101.1 

80 133.4 100.0 100.0 95.0 98.8 

90 138.3 100.0 100.0 98.4 96.1 

100 143.3 100.0 100.0 103.2 92.9 

 
The best outcomes for urban areas are shown in Table 20. As it is the growth in traffic 
that reduces other impacts, the best outcome is associated with the lowest growth in 
traffic. 
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Table 20: Best case outcome for urban areas. Relative changes from a baseline 0 % market 
penetration. 
 

Market 
penetration of 
automated 
vehicles (%) 

 
 
 

Traffic volume 

 
 
 

Road capacity 

 
 
 

Travel time 

 
 

Fuel 
consumption 

 
 

Number of 
accidents 

0 100.0 100.0 100.0 100.0 100.0 

10 101.2 101.3 98.5 94.8 101.4 

20 102.4 102.6 97.0 89.4 95.9 

30 103.7 103.9 95.6 84.0 90.6 

40 105.0 105.0 94.1 78.4 85.4 

50 106.2 106.2 92.7 72.8 80.5 

60 107.5 107.3 91.3 67.0 75.7 

70 108.8 108.4 90.0 61.1 71.2 

80 110.2 109.4 88.6 55.1 66.8 

90 111.5 110.4 87.3 49.1 62.7 

100 112.9 111.3 86.0 42.9 58.8 

 
It is seen that both travel time, fuel consumption and the number of accidents is 
reduced. Figure 30 illustrates the range of outcomes for the number of accidents. 
 

 
Figure 30: Sensitivity analysis with respect to accidents in urban areas 
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8 Discussion 

 

This chapter discusses how far the dose-response approach can be taken when 
trying to estimate impacts of connected and automated vehicles. It also 
discusses whether some potential impacts can be better modelled as stepwise 
functions. Finally, it discusses whether all potential impacts that have been 
identified need to be predicted or whether predictions are inconsequential, as 
some potential impacts are unlikely to influence the adoption of connected and 
automated vehicles. 

 

8.1 The dose-response approach – advantages and 
limitations 

As noted in Chapter 3, the transition to a transport system based on connected and 
automated vehicles is likely to take place gradually over an extended period of time. 
Impacts are therefore likely to develop gradually as the market penetration of connected 
and automated vehicles increases. This suggests that it is fruitful to describe impacts in 
terms of continuous functions, having the level of automation or the degree of market 
penetration of vehicles at a given level of automation as the principal independent 
variable. 
 
As far as the level of automation is concerned, it is impossible to predict when vehicles at 
SAE levels 3, 4 or 5 will be introduced, and how the mix of vehicles at different levels of 
automation will be in the fleet of vehicles. Any number of mixes can be imagined, such 
as 40% non-automated, 20% level 3, 20% level 4 and 20% level 5, or any other mixture 
of percentages one can make up. To make the task of predicting impacts analytically 
tractable, it has been assumed that all potential impacts are unidirectional and can be 
thought of as continuous functions. One can imagine more complex relationships, in 
which the experiences gained when a certain technology has reached a certain level of 
market penetration lead to changes in technology that changes the impacts it will 
subsequently have. This form of “learning-by-doing” is likely to take place, but it is not 
possible to predict its impacts with any confidence. One can imagine that impacts will 
accumulate slowly at first and then accelerate as a result of learning-by-doing. However, 
many functional forms are consistent with such a relationship. 
 
It is most consistent with current knowledge, and represents an effective way of 
summarising it, to model the impacts of connected and automated vehicles as continuous 
dose-response curves with the level of market penetration representing the dose and a 
given impact representing the response. Indeed, most of the traffic simulation studies 
found in the literature either contain dose-response curves or a set of data points to 
which a dose-response curve can be fitted. 
 
The principal advantages of modelling impacts of connected and automated vehicles by 
means of dose-response functions are: 
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1. The functions are consistent with a gradual introduction of connected and 
automated vehicles. 

2. The functions bypass the need to make predictions about when, and how long, 
the introduction of connected and automated vehicles will take. These aspects are 
implicit in the market penetration rate of connected and automated vehicles. 

3. The functions are flexible with respect to shape: they can be linear or non-linear, 
steep or flat. 

4. It is possible to account for interactions between impacts, or rebound impacts, by 
multiplying dose-response curves with each other. 

5. It is possible to produce mixed dose-response curves that are weighted or non-
weighted combinations of several curves. 

6. If a dose-response curve is based on many data points, the dispersion of the data 
points can be interpreted as an indicator of the uncertainty surrounding the curve. 

7. It is possible to develop dose response curves for at least the principal impacts of 
connected and automated vehicles as observed in traffic, such as road capacity, 
traffic volume, travel time, travel delay, fuel consumption and the number of 
accidents. 

 
There are, on the other hand, several limitations in modelling the impacts of connected 
and automated vehicles as dose-response functions: 
 

1. It is, at the present state of knowledge, only possible to include easily observable 
impacts in traffic. There are no dose-response functions for some potentially 
important impacts, like a transition to shared mobility or to electric vehicles. 

2. Some potential impacts of connected and automated vehicles may not develop 
gradually in the manner of a continuous function, but rather take the form of one 
or a few major steps. 

3. Little is known about the uncertainty associated with some dose-response curves. 
Curves based on few data points may give a spurious impression of precision, as 
functions tend to fit better when there are few data points than when there are 
many. 

4. Some dose-response curves, in particular those for road safety, are based on 
surrogate measures, mainly traffic conflicts. In this deliverable, no attempt has 
been to establish conversion rates between the number of conflicts and the 
number of accidents. 

5. The dose-response curves presented in this deliverable mostly refer to potential 
impacts of vehicles at the highest level of automation. The curves therefore 
represent maximum potential impacts. 

 
These limitations mean that a policy support tool designed to help policymakers estimate 
impacts of connected and automated vehicles cannot be based exclusively on dose-
response functions. 
 

8.2 Non-continuous impacts 
Some potential impacts of connected and automated vehicles may not take the form of 
continuous functions. 
 
There will be a stepwise change in vehicle ownership costs. Connected and automated 
vehicles are expected to be more expensive to buy than current vehicles, but cheaper to 
operate. The additional ownership costs are expected to come down over time, as 
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economies of scale are realised in the production of the vehicles. These changes are very 
difficult to predict and may not necessarily resemble any continuous function. 
 
Trust in technology is also likely to be discontinuous. Building trust takes times and a 
single mishap may generate distrust that may take long to overcome. It is likely that 
people will be less forgiving with respect to malfunctions in automation technology than 
with respect to errors made by a human driver. 
 
Access to travel for people who are currently not able to drive a car is also likely to 
become possible only at the highest level of automation. Public transport is, at least to 
some extent, accessible today for children, the blind or people who for other reasons are 
not allowed to drive a motor vehicle. But public transport today has human drivers, and 
there will usually be other passengers who may assist a disabled person should the need 
for it arise. It is only when automation technology has become very reliable that it can 
become fully accessible to those who are currently excluded from driving motor vehicles. 
Thus, gain in accessibility is likely to be a stepwise change, not a gradual one. 
 

8.3 Other potential impacts 
Some of the potential impacts of connected and automated vehicles may not need to be 
predicted, because these potential impacts are likely to be regarded either as irrelevant 
(i.e. their occurrence will not influence the introduction of CATS) or too small to be worth 
the effort of trying to predict them. Other impacts are likely to be self-corrected through 
the market mechanism. 
 
A case belonging to the latter category is travel comfort. People are unlikely to accept 
automated vehicles if travel comfort in them is substantially below current travel comfort 
in a car or a public transport vehicle. An automated car that accelerates in jerks, brakes 
very hard, and has no well-functioning ventilation system will be regarded as a step 
backwards and will not sell in the market. The public will demand at least the same level 
of comfort as in current vehicles. Motion sickness could be an issue in automated 
vehicles, which it mostly is not in cars today. Car passengers experience changes in 
speed and direction as more violent than car drivers do. To compensate for this, and 
reduce the risk of motion sickness, automated vehicles would have to adopt a very soft 
and smooth style of driving, avoiding any sudden changes in speed and/or direction. Car 
manufacturers will simply have to adapt to these expectations.  
 
Three other potential impacts whose relevance is at least open to discussion are changes 
in geographic accessibility, employment and public finances. The analysis by Meyer et al. 
(2017) show minor changes in geographic accessibility as a result of automated vehicles. 
In a conservative scenario, mean accessibility, weighted by population size increased by 
1.4%. In an optimistic scenario, the increase was 10%. These small effects are not 
surprising. Automated vehicles will, at least in the short term, not change the road 
system or the location of businesses and residential areas. They may stimulate urban 
sprawl, which, if anything, reduces accessibility. The small effects found by Meyer et al. 
(2017), and the apparently large uncertainty associated with them, suggests that putting 
more effort into modelling these effects should have low priority. 
 
Similar points of view are relevant with respect to effects on employment. The 
International Transport Forum (2017) discusses potential effects on employment. It is 
clear that full automation of transport means that drivers will lose their jobs. However, it 
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is not likely that this loss of jobs will be seen as a decisive argument against introducing 
automated vehicles. There are many historical examples of how the introduction of new 
technology has caused some types of jobs to disappear and new types of jobs to arise. 
This is the very nature of economic development. It is therefore suggested not to include 
changes in employment as a potential impact of connected and automated vehicles. 
 
Changes in public finances as a result of the introduction of connected and automated 
vehicles has also been mentioned in some studies. An example is loss of income from 
parking fees if shared mobility replaces individual mobility. Again, however, public 
finances are very flexible. A city ought to be able to replace the loss of income from 
parking fees by creating another source of revenue. Road pricing is one possibility. Road 
pricing may be used to prevent transport from becoming cheaper. Although cheaper 
transport, in particular cheaper commercial transport where the costs of having a driver 
are saved, has been put forward as one the advantages of connected and automated 
transport, it is highly debatable if this is indeed an advantage. Cheaper transport is likely 
to mean more transport, and more transport will generate rebound effects that diminish 
many of the potential benefits of connected and automated vehicles. An increased traffic 
volume will reduce savings in travel time, may generate more emissions, may diminish 
gains in road safety and may ultimately require an expansion of road capacity. 
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9 Conclusions 

 

This chapter summarises the main conclusions of the study presented in this 
deliverable with respect to: (1) The methods that can be applied to estimate 
and predict potential impacts of connected and automated vehicles; (2) The 
choice of how best to represent the impacts of connected and automated 
vehicles; (3) The need for more knowledge about the potential impacts of 
connected and automated vehicles; and (4) The choice of impacts to include in 
an assessment of the potential impacts of connected and automated vehicles. 

 
The main conclusions of the study presented in this deliverable will be presented under 
four major headings. 
 

9.1 Methods for estimating and predicting impacts 
A survey was made of methods that can be applied for the purpose of estimating and 
predicting potential impacts of connected and automated vehicles. A distinction was 
made between retrospective methods and future-oriented methods. Both classes of 
methods are relevant for predicting impacts of connected and automated vehicles. The 
main conclusions are: 
 

1. Various forms of traffic simulations are the most commonly applied method for 
predicting the impacts of connected and automated vehicles. 

2. Traffic simulations have been used to study several potential impacts of connected 
and automated vehicles, including impacts on: 

a. Road capacity, including junction capacity 
b. Traffic volume 
c. Travel time, including congestion delays 
d. Fuel consumption 
e. Road accidents 

3. The results of most simulation studies show potential impacts of connected and 
automated vehicles as a function of their market penetration rate. 

4. Most simulation studies refer to an urban traffic environment or to motorways. 
There are few simulation studies dealing with impacts on rural all-purpose roads. 

5. The simulation studies all rely on a ceteris paribus condition, meaning they 
assume that all else remains equal. This means that they do not account for 
potential rebound effects of connected and automated vehicles. 

6. One rebound effect which is very likely to occur as a result of increased road 
capacity is induced traffic. The effects of increased road capacity on travel 
demand have been extensively studied and summarised by means of meta-
analyses. 

7. Cost analyses and studies of willingness-to-pay are relevant to provide a basis for 
cost-benefit analyses of connected and automated vehicles. A few such studies 
have been reported. 
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9.2 How to describe and measure impacts 
There are many ways of describing and measuring the potential impacts of connected 
and automated vehicles. The following approaches to quantifying impacts are the most 
common: 
 

1. Impacts are modelled as a dose-response curve having the rate of market 
penetration of automated vehicles as the dose and the size of an impact as the 
response. 

2. The dose-response model is flexible and applicable to many potential impacts of 
connected and automated vehicles. 

3. Not all impacts of connected and automated vehicles will take the form of a 
continuous function. Some impacts are likely to resemble stepwise changes. 

 
In this deliverable, dose-response curves have been estimated for the following impacts: 
 

1. Impacts on capacity and mobility 
a. Lane capacity 
b. Junction capacity 
c. Delays on motorways 
d. Delays in roundabouts 
e. Delays in signalised junctions 
f. Travel time on motorways 
g. Delays in junctions (average of roundabouts and signalised) 
h. Travel time in cities (derived from changes in capacity and delays) 

2. Impacts on safety 
a. Rear-end and lane change collisions (motorways) 
b. Accidents in signalised junctions 
c. Accidents in roundabouts 
d. Accidents in priority controlled junctions 
e. Cyclist and pedestrian accidents 
f. Accidents in urban junctions (average of signals, roundabouts, priority) 

3. Impacts on fuel consumption (and emissions) 
a. Fuel consumption (and emissions, if these are assumed to be proportional 

to fuel consumption) 
4. Other impacts and feedback impacts 

a. Diffusion curves for market penetration of automated vehicles 
b. (Induced) travel demand on motorways 
c. (Induced) travel demand in cities 
d. Behavioural adaptation to platoons by manually driven vehicles 

 
In addition to the dose-response functions, the following impacts were quantified: 
 

4. Willingness-to-pay for automation technology 
5. Demand function for automated vehicles 
6. Valuation of travel time in automated vehicles 

 
Connected and automated vehicles are likely to increase road capacity, reduce travel 
time, reduce emissions and reduce the number of accidents. A rebound effect in terms of 
increased traffic is likely to occur. 
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9.3 Need for more knowledge 
Some potential impacts of connected and automated vehicles are, at the current state of 
knowledge, more difficult to predict than others. Impacts that are highly uncertain 
include: 
 

1. Whether there will be a widespread transition from individual to shared mobility. 
There is no consensus on whether individual use of motor vehicles will continue at 
present levels or be replaced by various forms of shared mobility. 

2. It is not clear what type of propulsion energy connected and automated vehicles 
will use. Some researchers expect the introduction of connected and automated 
vehicles to be associated with a transition to electric propulsion. 

3. Connected and automated vehicles are vulnerable to cyber attacks. However, the 
risk of such attacks cannot be quantified. Potential scenarios can be described. 

4. The costs of connected and automated vehicles are highly uncertain. It is not 
clear that connected and automated vehicles will be as affordable as current 
motor vehicles. The costs of automation technology may influence the level of 
inequality in access to transport. 

5. Behavioural adaptation to connected and automated vehicles, in particular during 
the transition period before full market penetration. While some studies suggest 
various forms of behavioural adaptation, predicting its form and impacts is 
impossible or speculative. 

6. Changes in employment are difficult to predict. While full automation will 
eliminate the need for drivers, other potential changes in employment are less 
known. 

 

9.4 Impact inclusion criteria 
Some potential impacts of connected and automated vehicles are very poorly known or 
impossible to predict. Some impacts are likely to be small. Some impacts can be 
neutralised by means of compensatory policy instruments. And finally, some impacts are 
likely to be regarded as irrelevant for policy making, although they are predictable, and 
per se possibly even regarded as undesirable. These impacts include: 
 

1. Changes in travel comfort, as related to physical components such as 
acceleration, braking and ventilation. Vehicles performing poorly with respect to 
comfort will not sell and manufacturers will be forced to adapt to feedback from 
the market. 

2. Changes in employment. Fully automated vehicles do not need a driver. However, 
the loss of driver jobs is unlikely to be viewed as an important, or even relevant, 
objection to the introduction of automated vehicles. 

3. Changes in geographic accessibility. Accessibility is mainly a function of 
topography and the likely impacts on it of vehicle automation are small. 

4. Changes in public finances. Loss of any source of income can almost always be 
compensated for by the creation of another source of income. 
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