2nd Stakeholder Reference Group workshop takes place in Brussels

The LEVITATE Stakeholder Reference Group met for the second time in the project’s lifetime for a workshop held on 26 November in Brussels. 37 people from across Europe, including many representatives of local and regional government, took part. The workshop provided an overview of the mechanics of the launch of the developing Policy Support Tool, which will be one of the main outputs of the project and is being  established to enable policy makers and planners to run their own assessment of the potential impact of connected and automated transport systems in their city or region and across several transport policy domains.. Valuable insights were collected on how to further develop this tool.

The aim of LEVITATE’s Policy Support Tool (PST) is to help public authorities predict the impact of connected and automated transport systems (CATS) and identify policy interventions to help achieve certain long-term mobility goals and/or to mitigate the potential negative effects of vehicle automation. A variety of stakeholders attended the meeting: local and regional authorities, national authorities, national road operators and researchers.

The workshop opened with an introduction by Suzanne Hoadley (Polis) on the vision of Polis on automation and other European projects related to automation, followed by Pete Thomas (Loughborough University), who introduced the LEVITATE project, its objectives and the aim of the workshop.

The first session focused on giving an overview of  the Policy Support Tool (PST): its components, what it can and cannot do, what input will be required and what the output might look like. George Yannis (National Technical University of Athens) demonstrated how the tool could work in the future, based on different assessment methods. He also presented one practical case to illustrate the tool’s expected functioning, doing so in a step by step process.

The different CATS impact areas were presented by Rune Elvik (Institute of Transport Economics), followed by an explanation of why they were selected (for more information on the impacts of CATS you can consult this report). Wolfgang Ponweiser (Austrian Institute of Technology) gave an overview of the CATS policy interventions (related to urban transport, economic incentives, access and space allocation). He introduced the backcasting method as a tool to predict the impacts of CATS, highlighting that backcasting starts with the city’s vision – the targets cities want to achieve.

After these presentations, the participants broke up into four smaller groups to discuss the PST and the backcasting methodology. Participants gave their views on the PST structure that had been presented, its usability and the functionalities it should have, and reflected on the reasons why they would use it. The challenges that could be faced during the development of the PST were also discussed, and some ideas on how it could be improved arose. During the discussion, participants also provided insights about the policy interventions they considered to be the most relevant.

Their feedback was collected by the project partners, who closed the session by reflecting on the main conclusions of the workshop and laying out the next steps for the LEVITATE project.

Defining the future of urban, passenger car, and freight transport

LEVITATE is currently building tools to help European cities, regions and national governments prepare for a future with increasing levels of automated vehicles in passenger cars, urban transport services and urban logistics. The project is preparing a new impact assessment framework to enable policy makers to maximise the benefits of connected and automated transport systems (CATS) and utilise the technologies to achieve societal objectives.

Defining the future of urban, passenger car, and freight transport

Recently several reports have been published within the LEVITATE project. A set of three deliverables provide the working framework under which each of the project use cases and its impacts, can be defined. Namely, Defining the future of urban transport (D5.1); Defining the future of passenger car transport (D6.1) and Defining the future of freight transport (D7.1).

Findings were obtained in two ways: through literature review, and through a dedicated stakeholder workshop to gather the views from a group of experts (Stakeholder Reference Group or SRG) on the future of CATS and their application. This workshop was held in Gothenburg on 28th of May 2019 and counted with the participation of 40 experts. An informed list of sub-use cases of possible interest from a CATS perspective was developed for use cases of urban transport, passenger cars and freight transport

Overall, according to workshop experts, CATS are mainly expected to supplement public transport functions. The deployment of cooperative, connected and autonomous vehicles may have considerable impacts on urban transport operations, through advanced city shuttles and other micro-transit vehicles. There are many opportunities that would be available through these new technologies and cities would need to prepare to take full advantage of them. The report aims at defining expected penetration rates, influenced by market forces and technology adoption. In general, the reviewed literature suggests the future of CATS to be positive in terms of their impacts on traffic, safety, environment, economy and mobility. However, their uptake is most likely to be influenced by trust and user’s acceptance.

Initial screening of literature on connected and automated passenger cars suggests that they have potential to increase the capacity of lanes and lead to a reduction in congestion and fuel consumption in the short-term. However, they could increase travel demand due to changes in destination choices (for example, longer journeys), changes in transport mode (shift from public transport) and introduction of new users. Various forecasting studies show that the claimed (by CATS industry) benefits of the widespread use of automated passenger cars for personal use, would only be achieved if we move from a privately owned to a shared-ownership model. In addition, the use of automated passenger cars for personal use is more likely to be lower than their use as mobility services due to the prohibitive initial vehicle purchase costs.

Compared to passenger cars, user acceptance of CATS technology in urban freight is less of an issue. The reason is that these vehicles are acquired and used by freight operators. Freight vehicles can be regarded as tools and driving as a job. Therefore, commercialisation of automated freight vehicles has different driving factors to automated passenger cars. Roadmaps of European associations, however, differentiate between urban freight transport and long-distance freight transport, with CATS having a major role in the latter. A literature search on Advanced Driver Assistance Systems (automation level 1 and 2) show their impacts on traffic, safety, environment, mobility and society. The systems are similar to those of passenger cars, with the exception of a few systems such as speed limiters or automatic electronic tolling system which are more relevant for freight vehicles. The consensus of the SRG was that collaboration between freight operators should be achieved by facilitating data sharing, utilising consolidation centres, and improving last mile solutions.

The findings of these deliverables will be key in the further development of the use cases and provide the foundation for subsequent work to look at short-, medium- and long-term impacts.

You can access all the publications and learn more about the project here.