LEVITATE partner in the spotlight

Questions to Helmut Augustin, City of Vienna

Q: Please, introduce yourself shortly: what do you do in Vienna and what is your role in the LEVITATE project?

A: My name is Helmut Augustin. I hold a degree in Urban Planning. I have been working for the Vienna City Administration since 2004, currently in the Urban Planning Department, Section Mobility Strategies, as head of the Coordination Unit for Digitisation. I cover quite a big range of topics including (geo)data, quantitative analytics, data protection, Intelligent Transport Systems, Automated Driving and Geographical Information Systems.

Q: As a city partner, how do you contribute to project LEVITATE and why did you join the project?

A: I think the most important thing is that we bring in the perspective of a local government and a road authority. I think it is crucial to add this perspective to the discourse about CAVs (Connected and Automated Vehicles) which is otherwise quite industry-driven.

Q: What are Vienna’s views on and vision for connected and automated transport systems in an urban context?

A: We welcome CAVs if they are able to contribute to our smart city goals, in other words, they help us remain one of the most liveable cities. But our general approach is: Autonomous Vehicles must adapt to the needs of the city and its inhabitants, not the other way round.

An important point is how an automated transport system affects space consumption. Space is scarce in cities. It must be used as efficiently as possible. The most space-efficient and energy-efficient transport modes are by far walking, cycling and mass transit. There is an impressive picture by We Ride Australia which illustrates this. Therefore, we see CAVs as complementing, not competing with public transport. So, they should primarily operate in peripheral areas and between, not parallel to major axes of public transport, where current systems of public transport have weaknesses.

Another important point is compact settlement structures, including in rural areas, because CAVs might promote longer driving distances and consequently urban sprawl.

Q: What about safety?

A: This is primarily a topic for the national and European level. Our request is that CAVs must deal with conventional traffic participants, especially in mixed traffic with pedestrians and cyclists. Of course, CAVs must not expect vulnerable road users to be equipped with electronic safety devices.
CAVs shall only be permitted if proven to be significantly safer than human drivers.
CAVs must be safe on their own and responsible for their actions.

Q: Will automated driving require lots of new roadside infrastructure?

A: ITS roadside infrastructure might provide additional layers of safety. But CAVs must never rely primarily on ITS infrastructure, or they will be restricted to use specially equipped corridors only. Our position is that CAVs shall adapt to public spaces, not the other way round. They must be able to deal with the existing traffic guidance facilities.

I believe the possible shortcomings of CAVs at the current state of technical maturity should not be compensated by costly public roadside infrastructure. Rather this is a task for R&D units of automotive manufacturers. In this respect we need to ensure that international standardisation is not at the expense of those who maintain public roads.

Q: And what about dedicated lanes?

A: Cities have made great efforts in reducing barriers in urban space. They have constructed bridges, under- and overpasses, crosswalks and passageways. The goal is a walkable city and attractive public space.  Dedicated lanes, especially those with physical barriers, clearly do not comply with this strategy.

In contrast we can imagine that CAVs offer new opportunities for attractive public space and liveable streets. CAVs follow regulations, are supposed to be safe and eco-friendly. Thus, they might work a lot better in shared spaces than conventional cars currently do, once initial technical weaknesses are overcome.

Q: Will CAV change the way traffic management works?

A: Traffic Management is increasingly driven by algorithms and data. We must therefore increasingly target Navigation-Systems rather than human drivers. As data-based traffic management and decision support requires data, public authorities need access to this data, including in-vehicle generated data. Of course, we only require statistical, fully anonymized data.

My vision would be that dynamic and comprehensive incentive systems manage the traffic flow. Routing is based on the optimum for the whole system (rather than individual optima). System overloads can be detected in advance and minimized. And as already mentioned: AV services complement, not compete with public transport.

Q: When do you think automated transport systems are going to be widespread in urban areas?

A: This is really hard to answer. Let me ask more pertinent questions. The critical point is not when CAVs will arrive in urban areas. Rather the critical questions are: Will cities be ready in time? In which framework will CAVs operate then? Which rules will they follow?

Q: Will Vienna be ready in time for a future with CAVs?

A: We are working on that on different levels and aspects. One important contribution will come from the LEVITATE project. This should help us getting a deeper understanding of the effects different policy options might have.
So being optimistic, I would conclude, “yes, we will be ready in time!”.

Automated vehicles and COVID-19 – what we can learn from it

The COVID-19 pandemic has halted the world nearly to a standstill. There has been a massive economic, social and welfare impact and the common factor is mobility. In LEVITATE, we are investigating the impacts of Connected and Automated Transport Systems (CATS) on our society. COVID-19 has been catastrophic event at world level, but we must learn from this tragedy and understand the implications for CATS era.

Urban Transport
The introduction of point to point, anywhere to anywhere or last-mile automated shuttle services maybe beneficial during a pandemic such as COVID-19 crisis. Highly automated shuttles (level 4 onwards) will remove the need for a driver and hence the risk of infection. Furthemore, a more frequent service may be offered, to accommodate the reduced passenger capacity of vehicles due to social distancing, without the growth in operational costs associated with the driver. In order to minimise the possibility of contamination and the spread of the virus, the supply of antiseptic materials for all users and workers, proper air conditioning and regular disinfection of the shuttles will need to be guaranteed.

Conversely, the reallocation of road space and modal priority, in favour of pedestrians and cyclists, could present a challenge to automated shuttles due to their cautious nature in the presence of these active modes whose movements are hard to predict by automated vehicle technology. This could significantly impact on the speed and overall efficiency of the shuttles, at least until the point where level 5 shuttles offering greater ‘intelligence’ than humans are mature and widely rolled out.

Passenger Transport
A personal passenger car that is manually driven in today’s scenario is no different to a personal automated passenger car in the future scenario. However, in a shared-car model, the vehicle could contribute to the spread COVID-19 if the vehicle is not thoroughly cleaned. Therefore, it will be paramount that the shared cars are cleaned regularly and that it is clear whose responsibility it is to keep the cars clean. It is probable that the shared-car usage will be discouraged in similar circumstances to COVID-19 and perhaps public behavior might shift towards active travel mode and personal car usage. More space allowed for active travel will increase car traffic as capacity for them is reduced. This could be mitigated by introducing staggered shift working pattern (perhaps even combine with alternate days) for those involved in less essential work that cannont be done by staying at home.

As mobility is restricted, there has been natural decline in traffic incidents, but it is arguable that crash severity would increase due to increased speeding. Automated vehicles without ability to alter the speeding behaviours, and associated to reckless driving, will benefit in minimising the safety impacts due to driving behavioural changes resulting from open roads.

Freight transport
During the COVID-19 crisis, major commercial facilities such as shops, markets, restaurants have either shut or people have stayed away due to the health risk. Therefore, demand in e-commerce or food delivery service has increased significantly. For example, Carrefour reported that the delivery of vegetables has increased by 600% during the lockdown period in China [1]. In addition, contactless delivery has become a standard or even requirement in many countries to protect delivery personnel and customers.

This overlaps with the main vision of future logistics concepts, which foresees the automated distribution of goods and even the handover process without human interaction. However, contactless handover requires infrastructure, for example the current state-of-the-art foresees physical internet boxes (supplier side) or white label parcel boxes (customer side). During the COVID-19 crisis, contactless delivery has been performed without either of these. Currently, most people are at home and therefore, the now applied procedure to place the goods in front of the customer’s door, ringing the bell, and walking away works well and (small) failures are accepted by the vendor.

Although the current lockdown and curfew will finally come to an end soon, we are aware that pandemics such as COVID-19 may strike the globe again. Therefore, further developments with respect to automated contactless handover technologies must go on. For a full rollout of automated delivery, we do not know yet who will win the race: automated handover infrastructure or level 5 automated transport. In the end, both will be necessary for automated delivery of goods.

[1] Campaign. COVID-19 media and consumption impacts in China: By the numbers. Retrieved online on 2020-04-28: https://www.campaignasia.com/article/covid-19-media-and-consumption-impacts-in-china-by-the-numbers/458225.

 

 

 

 

2nd LEVITATE webinar: The impacts of automation in urban transport – featuring local urban strategies

Urban mobility is going through unprecedented changes during these weeks. Cities are facing challenges which require unique solutions in no time due to the COVID-19 crisis. In addition to these, local mobility strategies for longer terms must be reviewed and adapted to the new normal.

Will connected and automated technologies play a more substantial role in urban mobility? How can we predict their impacts on urban mobility?

Join our webinar and listen to our LEVITATE partners and city representatives, who are eager to share their views with you!

Title: 2nd LEVITATE Webinar: The impacts of automation in urban transport – featuring local urban strategies
Date & time: 10:00-11:30 CET, 11 June, 2020

Please register online, if you wish to participate. You will receive the participation link by email a few days prior to the webinar.

Source photo:
Vienna City Adminsitration/©schreinerkastler.at

Watch first webinar: the future impacts of automation in freight transport

Will freight transport and logistics become safer, more effective or integrated as a result of automated technologies on the market? Find out by watching the first LEVITATE webinar!

The first LEVITATE webinar on 23 April was framed around the opportunities and challenges that freight transport is facing as a result of innovations in automated technologies. Looking at the current situation we are living in, discussions were also focused around the impacts of the COVID-19 crisis on the sector. Furthermore, expected changes in the implementation and operation of freight and logistics systems in the post-COVID times were on the table.

The webinar was kicked off by Pete Thomas, project coordinator of LEVITATE, who gave a brief introduction about the project. It was followed by a LEVITATE-focused presentation from Bin Hu, Scientist at the Austrian Institute of Technology, who is leading the freight-related use case in the project. He presented about the impact of automation on urban parcel delivery through the results of micro-simulations and operations research carried out in the framework of the project.

Thanks to Fernando Liesa, Secretary General of ALICE (Alliance for Logistics Innovation through Collaboration in Europe), attendees learnt about the work of ALICE and how they help European logistical companies to keep up with developments and new strategies through collaboration and knowledge-sharing. The main research question which has been answered was how automation can help freight transport and logistics to reach zero-emission targets by 2050 and become more integrated on a European level. Fernando also pointed out some new challenges in the face of COVID-19 in relation to protecting vehicle drivers and riders during the pandemic by using automated technologies.

Last but not at least, Kris Neyens, Manager at VIL (Flemish Innovation Cluster for Logistics) presented one of their own projects after introducing their multidisciplinary collaboration in the Flemish freight sector. In project ALEES (self-driving logistical electric units for urban environments), VIL is testing autonomous urban logistical entities to distribute parcels throughout dense urban areas, for example through a demonstration in Mechelen to develop the software behind the technology and create the legislative environment for future operation. If you are curious about the previously mentioned project, you can read more here or we welcome you to watch the presentation during the recorded webinar below.

LEVITATE in TRB annual meeting 2020

Perhaps the biggest transportation research conference in the world – TRB – took place this year from the 11th to 16th of January 2020. LEVITATE could not be missing from this prestigious event, and this year, the project was represented by several members: Dr Alkis Papadoulis, Prof Pete Thomas and Prof Mohammed Quddus from Loughborough University, Dr Jordi Casas from Aimsun and Prof Eleni Vlahogianni from National Technical University of Athens. As expected, Connected and Automated Transport Systems were one of the themes that dominated the agenda of the conference as they have been the research focus of industry and academia for the last few years.

TRB is always an excellent opportunity for European and International projects to interact with each other and attempt to learn from each other’s research. The members of LEVITATE, attended lectern sessions where several CATS-related projects were presented (Co-Exist, HumanDrive among others), and the following conclusions were drawn.

  1. Connected and Automated Driving data are starting to emerge. Microsimulation software companies are starting to develop their “autonomous” vehicle algorithms based on this data and several studies are starting to employ these models in order to evaluate the impact of Connected and Automated Vehicles in simple road network layouts. These studies could potentially be very useful for Levitate, as they can provide a basis of comparison for the results of Levitate and they can provide useful guidelines regarding the configuration of driving models in order to simulate connectivity and automation.
  2. The definition of Connected and Automated Vehicles in simulation terms hasCa not advanced significantly during the last few years. This is where Levitate will aim to contribute by defining new CAV behaviours that will emerge due to the sub-use cases so cities can evaluate them in the Policy support tool.
  3. The transferability of results is still an on-going and sensitive topic for simulation-related projects as simulation models are location specific and models must be individually tailored for each different city of interest.

Additionally, LEVITATE’s most recent piece of simulation work on parking pricing policies in the Connected and Automated Vehicle era was presented in the Freeway and CAV Simulation subcommittee. The session was well attended from experts of the field and the members of the project received very useful feedback that will help strengthen the sub-use case work in the future.

The project is looking forward to attending more meetings in Europe and worldwide in order to exchange opinions and thoughts about its methods and assumptions.

Webinar: the future impacts of automation in freight transport

This webinar, which took place on 23 April 2020, gave an insight on autonomous solutions in freight, as well as their future impacts and potentials in the transport sector.

Presentations
– Introduction of LEVITATE and its use case on freight transport
– VIL (Platform for the logistics sector in Flanders) presents their project ALEES
– Overview of ALICE on Autonomous Freight Transport Potentials

View webinar recording
Are you also curious about recent autonomous innovation in freight transport and research on their future impacts and potentials? Then have a look at the recording of the webinar.

About LEVITATE
LEVITATE is a 3-year project which main output will be a policy support tool (PST) to help local authorities forecast the impacts of automated vehicles over the short, medium and long-term. The PST will also contain a back-casting tool providing guidance to local authorities on which measures to implement to achieve desired outcomes against a backdrop of increasing vehicle automation.

Advances in Connected and Autonomous Mobility – IEEE ITSC 2020

The 2020 annual flagship conference of the IEEE Intelligent Transportation Systems Society will be held in Rhodes, Greece in September. LEVITATE will contribute to this conference with a special session: Advances in Connected and Autonomous Mobility: From Data to Models, Impacts and Enablers for Adoption.

Recent breakthroughs in technology, digital infrastructure, dynamic mapping and big data computing will transform the way we will plan, undertake, interact, make decisions and use our built environment and transportation infrastructure for the movement of people and goods. Connected and Autonomous Mobility (CAM), enabled by vehicle connectivity and automation, cloud computing, artificial intelligence and Internet of Things (IoT), allows unprecedented capability to collect, exchange and analyze large volumes of data to formulate models and tools for optimal decision making at individual, local and city levels and will, therefore, increasingly be revolutionized our economy and society over the next decade. However, to what extent they will disrupt mobility and transport operations is still a subject of research. CAM services are expected to emerge in various forms affecting different user groups and imposing network-level changes on various urban scales. To this end, understanding public acceptance and the levels of adoption (and respective timing) of emerging technologies, devising novel approaches and modeling tools to replicate mixed and CAV (Connected and Autonomous Vehicles) traffic in large-scale urban networks for impact assessment and identifying large-scale procedures and policies for CAV traffic management are the key factors for successful deployment of CAM services.

This special session aims at:

  1. providing the audience with information about the deployment of state-of-the-art vehicular and transportation technologies to CAM in a smart city context;
  2. discussing the latest advancements, existing data, conceptual and modeling hurdles and challenges in both research and practice (particularly on the selected topics below)
  3. identifying potential research gaps and collaboration opportunities between industry and academia.

3rd Annual Workshop on System Dynamics in Transportation

The System Dynamics Society Special Interest Group in Transportation (SDS T-SIG) are pleased to announce that the 3rd Annual Workshop on System Dynamics in Transportation Modelling will take place in Palermo (Italy) on April 16th – 17th 2020, hosted by the Department DEMS & CED4 – System Dynamics Group, University of Palermo.

This free workshop will consist of a mix of presentations, practical sessions and network / sharing / collaboration building opportunities as well as the SDS T-SIG Annual Meeting. Participants do not need to be a SDS T-SIG member to present or attend.

The intention of the workshop is to showcase the range of research and practise being carried out in transport studies and planning using system dynamics (SD) as a modelling method, and it is designed to:

  • Promote the role of SD in transportation;
  • Facilitate communication and collaboration in transportation and SD;
  • Share teaching materials, works in progress, best practise case studies and state-of-the-art use of SD in transportation research and planning.

Read more »

VIDEO: LEVITATE project introduction

Pete Thomas, Project Coordinator, and project partners from the National Technical University of Athens and the University of Michigan express their views on the LEVITATE project during the second Consortium meeting in The Hague.

Have a look at the video:

2nd Stakeholder Reference Group workshop takes place in Brussels

The LEVITATE Stakeholder Reference Group met for the second time in the project’s lifetime for a workshop held on 26 November in Brussels. 37 people from across Europe, including many representatives of local and regional government, took part. The workshop provided an overview of the mechanics of the launch of the developing Policy Support Tool, which will be one of the main outputs of the project and is being  established to enable policy makers and planners to run their own assessment of the potential impact of connected and automated transport systems in their city or region and across several transport policy domains.. Valuable insights were collected on how to further develop this tool.

The aim of LEVITATE’s Policy Support Tool (PST) is to help public authorities predict the impact of connected and automated transport systems (CATS) and identify policy interventions to help achieve certain long-term mobility goals and/or to mitigate the potential negative effects of vehicle automation. A variety of stakeholders attended the meeting: local and regional authorities, national authorities, national road operators and researchers.

The workshop opened with an introduction by Suzanne Hoadley (Polis) on the vision of Polis on automation and other European projects related to automation, followed by Pete Thomas (Loughborough University), who introduced the LEVITATE project, its objectives and the aim of the workshop.

The first session focused on giving an overview of  the Policy Support Tool (PST): its components, what it can and cannot do, what input will be required and what the output might look like. George Yannis (National Technical University of Athens) demonstrated how the tool could work in the future, based on different assessment methods. He also presented one practical case to illustrate the tool’s expected functioning, doing so in a step by step process.

The different CATS impact areas were presented by Rune Elvik (Institute of Transport Economics), followed by an explanation of why they were selected (for more information on the impacts of CATS you can consult this report). Wolfgang Ponweiser (Austrian Institute of Technology) gave an overview of the CATS policy interventions (related to urban transport, economic incentives, access and space allocation). He introduced the backcasting method as a tool to predict the impacts of CATS, highlighting that backcasting starts with the city’s vision – the targets cities want to achieve.

After these presentations, the participants broke up into four smaller groups to discuss the PST and the backcasting methodology. Participants gave their views on the PST structure that had been presented, its usability and the functionalities it should have, and reflected on the reasons why they would use it. The challenges that could be faced during the development of the PST were also discussed, and some ideas on how it could be improved arose. During the discussion, participants also provided insights about the policy interventions they considered to be the most relevant.

Their feedback was collected by the project partners, who closed the session by reflecting on the main conclusions of the workshop and laying out the next steps for the LEVITATE project.